Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kohei Shimizu is active.

Publication


Featured researches published by Kohei Shimizu.


Brain Research | 2006

Phosphorylation of Extracellular Signal-Regulated Kinase in medullary and upper cervical cord neurons following noxious tooth pulp stimulation.

Kohei Shimizu; Masatake Asano; Junichi Kitagawa; Bunnai Ogiso; Ke Ren; Hidero Oki; Mitsuhiko Matsumoto; Koichi Iwata

The phosphorylated Extracellular Signal-regulated Kinase (pERK) and Fos expression and masticatory muscle activity were analyzed in rats with capsaicin-induced acute inflammation of the tooth pulp in order to clarify the role of the spinal trigeminal nucleus and upper cervical spinal cord in tooth pulp pain. Digastric and masseteric muscle activities were significantly increased following capsaicin injection into the molar tooth pulp but not after vehicle treatment. The pERK-like immunoreactive (LI) neurons were observed in the subnuclei interpolaris-caudalis transition (Vi/Vc) zone, the paratrigeminal nucleus (Pa5) and the superficial laminae of the caudal Vc/C2 zone. The pERK expression was detected as early as 2 min and peaked at 5 min after capsaicin or vehicle injection. The pERK expression in the Vi/Vc zone and Pa5 was bilateral, whereas it was predominantly ipsilateral in the caudal Vc/C2 zone. The capsaicin treatment of the whisker pad produced pERK expression in the rostro-caudal middle portion of the ipsilateral Vc, but small number of pERK-LI cells were observed after vehicle treatment. The pERK expression was similar in the Vi/Vc zone following capsaicin injection into the upper or lower molar tooth pulp, whereas the pERK expression was in the lateral portion of the caudal Vc/C2 zone after upper molar injection and restricted to the medial portion of the Vc/C2 zone after the lower molar capsaicin. These data were confirmed with Western blots. There were differences in the distribution of Fos protein-like immunoreactive (LI) cells and pERK-LI cells following tooth pulp stimulation. After capsaicin application into the upper molar tooth pulp, no pERK-LI cells were observed in the ventral part of the Vi/Vc zone, whereas many Fos protein-LI cells were expressed in this region. The difference in the distribution pattern of pERK- and Fos protein-LI cells in the Vi/Vc zone suggests their differential temporal expression profiles after capsaicin. The present findings suggest that tooth-pulp-driven neurons in the spinal trigeminal nucleus are involved in tooth pulp pain through activation of the intracellular signal transduction pathway that involves earlier ERK phosphorylation and subsequent Fos expression.


Molecular Pain | 2010

Purinergic receptors are involved in tooth-pulp evoked nocifensive behavior and brainstem neuronal activity

Kazunori Adachi; Kohei Shimizu; James W. Hu; Ikuko Suzuki; Hiroshi Sakagami; Noriaki Koshikawa; Barry J. Sessle; Masamichi Shinoda; Makiko Miyamoto; Kuniya Honda; Koichi Iwata

BackgroundTo evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP) was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK) phosphorylation in trigeminal spinal subnucleus caudalis (Vc), trigeminal spinal subnucleus interpolaris (Vi), upper cervical spinal cord (C1/C2) and paratrigeminal nucleus (Pa5) neurons were analyzed in rats.ResultsGenioglossus (GG) muscle activity was evoked by pulpal application of 100 mM α,β-meATP and was significantly larger than GG activity following vehicle (phosphate-buffered saline PBS) application (p < 0.01). The enhanced GG muscle activity following 100 mM α,β-meATP was significantly reduced (p < 0.05) by co-application of 1 mM TNP-ATP (P2X1, P2X3 and, P2X2/3 antagonist). A large number of pERK-LI cells were expressed in the Vc, Vi/Vc, C1/C2 and Pa5 at 5 min following pulpal application of 100 mM α,β-meATP compared to PBS application to the pulp (p < 0.05). The pERK-LI cell expression and GG muscle activity induced by 100 mM α,β-meATP pulpal application were significantly reduced after intrathecal injection of the MAPK/ERK kinase (MEK) inhibitor PD 98059 and by pulpal co-application of 1 mM TNP-ATP (p < 0.05).ConclusionsThe present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.


PLOS ONE | 2013

Mechanisms Underlying Ectopic Persistent Tooth-Pulp Pain following Pulpal Inflammation

Shingo Matsuura; Kohei Shimizu; Masamichi Shinoda; Kinuyo Ohara; Bunnai Ogiso; Kuniya Honda; Ayano Katagiri; Barry J. Sessle; Kentaro Urata; Koichi Iwata

In order to clarify the peripheral mechanisms of ectopic persistent pain in a tooth pulp following pulpal inflammation of an adjacent tooth, masseter muscle activity, phosphorylated extracellular signal-regulated protein kinase (pERK) and TRPV1 immunohistochemistries and satellite cell activation using glial fibrillary acidic protein (GFAP) immunohistochemistry in the trigeminal ganglion (TG) were studied in the rats with molar tooth-pulp inflammation. And, Fluorogold (FG) and DiI were also used in a neuronal tracing study to analyze if some TG neurons innervate more than one tooth pulp. Complete Freund’s adjuvant (CFA) or saline was applied into the upper first molar tooth pulp (M1) in pentobarbital-anesthetized rats, and capsaicin was applied into the upper second molar tooth pulp (M2) on day 3 after the CFA or saline application. Mean EMG activity elicited in the masseter muscle by capsaicin application to M2 was significantly larger in M1 CFA-applied rats compared with M1 vehicle-applied rats. The mean number of pERK-immunoreactive (IR) TG cells was significantly larger in M1 CFA-applied rats compared with M1 vehicle-applied rats. Application of the satellite cell inhibitor fluorocitrate (FC) into TG caused a significant depression of capsaicin-induced masseter muscle activity and a significant reduction of satellite cell activation. The number of TRPV1-IR TG cells innervating M2 was significantly larger in M1 CFA-applied rats compared with M1 vehicle-applied rats, and that was decreased following FC injection into TG. Furthermore, 6% of TG neurons innervating M1 and/or M2 innervated both M1 and M2. These findings suggest that satellite cell activation following tooth pulp inflammation and innervation of multiple tooth pulps by single TG neurons may be involved in the enhancement of the activity of TG neurons innervating adjacent non-inflamed teeth that also show enhancement of TRPV1 expression in TG neurons, resulting in the ectopic persistent tooth-pulp pain following pulpal inflammation of adjacent teeth.


Pain | 2017

Sensitization of TRPV1 and TRPA1 via peripheral mGluR5 signaling contributes to thermal and mechanical hypersensitivity.

Kuniya Honda; Masamichi Shinoda; Masahiro Kondo; Kohei Shimizu; Hisashi Yonemoto; Katsuhiko Otsuki; Ryuta Akasaka; Akihiko Furukawa; Koichi Iwata

Abstract Peripheral tissue inflammation or injury causes glutamate release from nociceptive axons, keratinocytes, and Schwann cells, resulting in thermal hypersensitivity. However, the detailed molecular mechanisms underlying glutamate-induced thermal hypersensitivity are unknown. The aim of this study was to clarify the involvement of peripheral transient receptor potential (TRP) TRP vanilloid 1 (TRPV1), TRP ankyrin 1 (TRPA1), and protein kinase C epsilon (PKC&egr;) in glutamate-induced pain hypersensitivity. The amount of glutamate in the facial tissue was significantly increased 3 days after facial Complete Freunds adjuvant injection. The head-withdrawal reflex threshold to heat, cold, or mechanical stimulation was significantly decreased on day 7 after continuous glutamate or metabotropic glutamate receptor 5 (mGluR5) agonist (CHPG) injection into the facial skin compared with vehicle-injected rats, and glutamate-induced hypersensitivity was significantly recovered by mGluR5 antagonist MTEP, TRPA1 antagonist HC-030031, TRPV1 antagonist SB366791, or PKC&egr; translocation inhibitor administration into the facial skin. TRPV1 and TRPA1 were expressed in mGluR5-immunoreactive (IR) trigeminal ganglion (TG) neurons innervating the facial skin, and mGluR5-IR TG neurons expressed PKC&egr;. There was no significant difference in the number of GluR5-IR TG neurons among glutamate-injected, saline-injected, and naive rats, whereas that of TRPV1- or TRPA1-IR TG neurons was significantly increased 7 days after continuous glutamate injection into the facial skin compared with vehicle injection. PKC&egr; phosphorylation in TG was significantly enhanced following glutamate injection into the facial skin. Moreover, neuronal activity of TG neurons was significantly increased following facial glutamate treatment. The present findings suggest that sensitization of TRPA1 and/or TRPV1 through mGluR5 signaling via PKC&egr; is involved in facial thermal and mechanical hypersensitivity.


PLOS ONE | 2014

Involvement of trigeminal transition zone and laminated subnucleus caudalis in masseter muscle hypersensitivity associated with tooth inflammation.

Kohei Shimizu; Kunihito Matsumoto; Noboru Noma; Shingo Matsuura; Kinuyo Ohara; Hiroki Komiya; Tetsuro Watase; Bunnai Ogiso; Yoshiyuki Tsuboi; Masamichi Shinoda; Keisuke Hatori; Yuka Nakaya; Koichi Iwata

A rat model of pulpitis/periapical periodontitis was used to study mechanisms underlying extraterritorial enhancement of masseter response associated with tooth inflammation. Periapical bone loss gradually increased and peaked at 6 weeks after complete Freund’s adjuvant (CFA) application to the upper molar tooth pulp (M1). On day 3, the number of Fos-immunoreactive (IR) cells was significantly larger in M1 CFA rats compared with M1 vehicle (veh) rats in the trigeminal subnucleus interpolaris/caudalis transition zone (Vi/Vc). The number of Fos-IR cells was significantly larger in M1 CFA and masseter (Mass) capsaicin applied (M1 CFA/Mass cap) rats compared with M1 veh/Mass veh rats in the contralateral Vc and Vi/Vc. The number of phosphorylated extracellular signal-regulated kinase (pERK)-IR cells was significantly larger in M1 CFA/Mass cap and M1 veh/Mass cap rats compared to Mass-vehicle applied rats with M1 vehicle or CFA in the Vi/Vc. Pulpal CFA application caused significant increase in the number of Fos-IR cells in the Vi/Vc but not Vc on week 6. The number of pERK-IR cells was significantly lager in the rats with capsaicin application to the Mass compared to Mass-vehicle treated rats after pulpal CFA- or vehicle-application. However, capsaicin application to the Mass did not further affect the number of Fos-IR cells in the Vi/Vc in pulpal CFA-applied rats. The digastric electromyographic (d-EMG) activity after Mass-capsaicin application was significantly increased on day 3 and lasted longer at 6 weeks after pulpal CFA application, and these increase and duration were significantly attenuated by i.t. PD98059, a MEK1 inhibitor. These findings suggest that Vi/Vc and Vc neuronal excitation is involved in the facilitation of extraterritorial hyperalgesia for Mass primed with periapical periodontitis or acute pulpal-inflammation. Furthermore, phosphorylation of ERK in the Vi/Vc and Vc play pivotal roles in masseter hyperalgesia after pulpitis or periapical periodontitis.


Molecular Pain | 2018

[EXPRESS] Role of medullary astroglial glutamine synthesis in tooth pulp hypersensitivity associated with frequent masseter muscle contraction

Tetsuro Watase; Kohei Shimizu; Kinuyo Ohara; Hiroki Komiya; Kohei Kanno; Keisuke Hatori; Noboru Noma; Kuniya Honda; Yoshiyuki Tsuboi; Ayano Katagiri; Masamichi Shinoda; Bunnai Ogiso; Koichi Iwata

Background The mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle hyperalgesia remain largely underinvestigated. In the present study, we aimed to determine whether masseter muscle contraction induced by daily electrical stimulation influences the mechanical head-withdrawal threshold and genioglossus electromyography activity caused by the application of capsaicin to the upper first molar tooth pulp. We further investigated whether astroglial glutamine synthesis is involved in first molar tooth pulp hypersensitivity associated with masseter muscle contraction. Methods The first molar tooth pulp was treated with capsaicin or vehicle in masseter muscle contraction or sham rats, following which the astroglial glutamine synthetase inhibitor methionine sulfoximine or Phosphate buffered saline (PBS) was applied. Astroglial activation was assessed via immunohistochemistry. Results The mechanical head-withdrawal threshold of the ipsilateral masseter muscle was significantly decreased in masseter muscle contraction rats than in sham rats. Genioglossus electromyography activity was significantly higher in masseter muscle contraction rats than sham rats. Glial fibrillary acidic protein-immunoreactive cell density was significantly higher in masseter muscle contraction rats than in sham rats. Administration of methionine sulfoximine induced no significant changes in the density of glial fibrillary acidic protein-immunoreactive cells relative to PBS treatment. However, mechanical head-withdrawal threshold was significantly higher in masseter muscle contraction rats than PBS-treated rats after methionine sulfoximine administration. Genioglossus electromyography activity following first molar tooth pulp capsaicin treatment was significantly lower in methionine sulfoximine-treated rats than in PBS-treated rats. In the ipsilateral region, the total number of phosphorylated extracellular signal-regulated protein kinase immunoreactive cells in the medullary dorsal horn was significantly smaller upon first molar tooth pulp capsaicin application in methionine sulfoximine-treated rats than in PBS-treated rats. Conclusions Our results suggest that masseter muscle contraction induces astroglial activation, and that this activation spreads from caudal to the obex in the medullary dorsal horn, resulting in enhanced neuronal excitability associated with astroglial glutamine synthesis in medullary dorsal horn neurons receiving inputs from the tooth pulp. These findings provide significant insight into the mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle contraction.


Journal of Oral Science | 2018

Involvement of transient receptor potential vanilloid 1 channel expression in orofacial cutaneous hypersensitivity following tooth pulp inflammation

Tetsuro Watase; Kohei Shimizu; Hiroki Komiya; Kinuyo Ohara; Koichi Iwata; Bunnai Ogiso

A study was conducted to evaluate the mechanisms underlying ectopic orofacial pain associated with tooth pulp inflammation in rats. We observed a significant decrease in the head withdrawal threshold (HWT) response to mechanical and heat stimuli applied to the ipsilateral facial skin upon application of complete Freunds adjuvant (CFA) to the upper first molar (M1TP) in comparison to application of vehicle. A large number of trigeminal ganglion (TG) neurons showed transient receptor potential vanilloid 1 (TRPV1) immunoreactivity (IR), and some of them were retrogradely labeled with fluorogold injected into the facial skin. A large number of cells showing IR for glial fibrillary acidic protein (GFAP) were observed in the 2nd compared to the 1st or 3rd branch regions of the TG, and TG cells innervating the facial skin were also surrounded by GFAP-IR cells. After administration of TRPV1 antagonist into the facial skin of M1TP CFA-treated rats, the decrease of HWTs in response to mechanical and heat stimulation of the facial skin was significantly reversed. The present findings suggest that the excitability of TG neurons is enhanced upon tooth pulp inflammation, leading to overexpression of TRPV1 in TG neurons innervating the facial skin, and that satellite glial cells are also activated, resulting in the development of ectopic orofacial pain.


Journal of Dental Research | 2018

Role of Neuron-Glial Interaction Mediated by IL-1β in Ectopic Tooth Pain:

Hiroki Komiya; Kohei Shimizu; Noboru Noma; Yoshiyuki Tsuboi; Kuniya Honda; Kohei Kanno; Kinuyo Ohara; Masamichi Shinoda; Bunnai Ogiso; Koichi Iwata

Although many reports have demonstrated that ectopic pain develops in the orofacial region following tooth pulp inflammation, which often causes misdiagnosis and inappropriate treatment for patients with pulpitis, the precise mechanism remains unknown. In the present study, we hypothesized that the functional interaction between satellite glial cells and neurons mediated by interleukin 1β (IL-1β) in the trigeminal ganglion (TG) is involved in ectopic orofacial pain associated with tooth pulp inflammation. The digastric muscle electromyogram (D-EMG) activity elicited by capsaicin administration into the maxillary second molar tooth pulp was analyzed to evaluate the noxious reflex and was significantly increased in rats with inflammation of the maxillary first molar (M1) versus rats injected with saline. A significant increase in the expression of connexin43 (Cx43), a gap junction containing protein, was observed in activated satellite glial cells surrounding second molar–innervating neurons in the TG after M1 pulpitis. Daily administration of Gap26, a Cx43 mimetic peptide and inhibitor, in the TG significantly suppressed the enhancement of capsaicin-induced D-EMG activity and the percentage of Fluoro-Gold (FG)–labeled cells encircled by glial fibrillary acid protein–immunoreactive (IR) + Cx43-IR cells after M1 pulp inflammation (P < 0.01). The percentage of FG-labeled cells encircled by glial fibrillary acid protein–IR + IL-1β-IR cells, IL-1 type I receptor–IR cells labeled with FG, and TRPV1-IR cells labeled with FG significantly increased after M1 pulp inflammation (P < 0.01). Daily administration of IL-1ra, an IL-1 receptor antagonist, into the TG significantly reduced the enhancement of capsaicin-induced D-EMG activity and the percentage of TRPV1-IR neurons labeled with FG after M1 pulp inflammation (P < 0.01). The present findings suggest that satellite glial cell is activated in the TG via activated gap junctions composed of Cx43 following tooth pulp inflammation, which leads to the hyperactivation of remote neurons via IL-1β mechanisms and results in ectopic tooth pulp pain in the adjacent tooth.


Neuroscience Letters | 2017

Botulinum neurotoxin type A alleviates mechanical hypersensitivity associated with infraorbital nerve constriction injury in rats

Noboru Noma; Kosuke Watanabe; Yuka Sato; Yoshiki Imamura; Yumiko Yamamoto; Reio Ito; Mitsuru Maruno; Kohei Shimizu; Koichi Iwata

We investigated the effect of botulinum neurotoxin type A (BoNT-A) on mechanical allodynia and hyperalgesia associated with infraorbital nerve constriction (ION-CCI) in rats. ION-CCI rats received a subcutaneous BoNT-A injection into the whisker pad area on day 7 postoperatively and underwent pain assessment on days 14 and 21 postoperatively. Rats were assigned to one of four treatment groups (n=5 each): ION-CCI+BoNT-A 20pg (low-dose group), ION-CCI+BoNT-A 200pg (high-dose group), ION-CCI+saline, and Sham. Mechanical allodynia and hyperalgesia were evaluated preoperatively (baseline) and on days 7, 14, and 21 postoperatively. After noxious mechanical stimulation of whisker pad skin, the number and distribution pattern of the phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) neurons were analyzed in the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2). On day 21, nocifensive behavior was attenuated by high-dose but not low-dose BoNT-A administration. In addition, after noxious mechanical stimulation of whisker pad skin, the numbers of pERK-IR cells in the superficial laminae of Vc and C1-C2 were significantly lower in the high-dose BoNT-A group than in the ION-CCI+saline group. The present findings suggest that, by suppressing Vc neuronal activity, high-dose intradermal injection of BoNT-A at the site of ION innervation alleviates mechanical facial allodynia and hyperalgesia associated with ION-CCI.


Journal of Neurophysiology | 2005

Effect of Chronic Inflammation on Dorsal Horn Nociceptive Neurons in Aged Rats

Junichi Kitagawa; Kenro Kanda; Miho Sugiura; Yoshiyuki Tsuboi; Akiko Ogawa; Kohei Shimizu; Natsu Koyama; Hiroshi Kamo; Tatsuhisa Watanabe; Ke Ren; Koichi Iwata

Collaboration


Dive into the Kohei Shimizu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge