Kohji Hizume
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kohji Hizume.
Current Biology | 2002
Shige H. Yoshimura; Kohji Hizume; Akiko Murakami; Takashi Sutani; Kunio Takeyasu; Mitsuhiro Yanagida
Condensin and cohesin are two protein complexes that act as the central mediators of chromosome condensation and sister chromatid cohesion, respectively. The basic underlying mechanism of action of these complexes remained enigmatic. Direct visualization of condensin and cohesin was expected to provide hints to their mechanisms. They are composed of heterodimers of distinct structural maintenance of chromosome (SMC) proteins and other non-SMC subunits. Here, we report the first observation of the architecture of condensin and its interaction with DNA by atomic force microscopy (AFM). The purified condensin SMC heterodimer shows a head-tail structure with a single head composed of globular domains and a tail with the coiled-coil region. Unexpectedly, the condensin non-SMC trimers associate with the head of SMC heterodimers, producing a larger head with the tail. The heteropentamer is bound to DNA in a distributive fashion, whereas condensin SMC heterodimers interact with DNA as aggregates within a large DNA-protein assembly. Thus, non-SMC trimers may regulate the ATPase activity of condensin by directly interacting with the globular domains of SMC heterodimer and alter the mode of DNA interaction. A model for the action of heteropentamer is presented.
The EMBO Journal | 2003
Akiko Sakai; Kohji Hizume; Takashi Sutani; Kunio Takeyasu; Mitsuhiro Yanagida
Condensin and cohesin are chromosomal protein complexes required for chromosome condensation and sister chromatid cohesion, respectively. They commonly contain the SMC (structural maintenance of chromosomes) subunits consisting of a long coiled‐coil with the terminal globular domains and the central hinge. Condensin and cohesin holo‐complexes contain three and two non‐SMC subunits, respectively. In this study, DNA interaction with cohesin and condensin complexes purified from fission yeast was investigated. The DNA reannealing activity is strong for condensin SMC heterodimer but weak for holo‐condensin, whereas no annealing activity is found for cohesin heterodimer SMC and Rad21‐bound heterotrimer complexes. One set of globular domains of the same condensin SMC is essential for the DNA reannealing activity. In addition, the coiled‐coil and hinge region of another SMC are needed. Atomic force microscopy discloses the molecular events of DNA reannealing. SMC assembly that occurs on reannealing DNA seems to be a necessary intermediary step. SMC is eliminated from the completed double‐stranded DNA. The ability of heterodimeric SMC to reanneal DNA may be regulated in vivo possibly through the non‐SMC heterotrimeric complex.
Ultramicroscopy | 2010
Yuji Higuchi; Kohji Hizume; Masatoshi Yokokawa; Shige H. Yoshimura; Kenichi Yoshikawa; Kunio Takeyasu
Nucleosome is a fundamental structural unit of chromatin, and the exposure from or occlusion into chromatin of genomic DNA is closely related to the regulation of gene expression. In this study, we analyzed the molecular dynamics of poly-nucleosomal arrays in solution by fast-scanning atomic force microscopy (AFM) to obtain a visual glimpse of nucleosome dynamics on chromatin fiber at single molecule level. The influence of the high-speed scanning probe on nucleosome dynamics can be neglected since bending elastic energy of DNA molecule showed similar probability distributions at different scan rates. In the sequential images of poly-nucleosomal arrays, the sliding of the nucleosome core particle and the dissociation of histone particle were visualized. The sliding showed limited fluctuation within approximately 50nm along the DNA strand. The histone dissociation occurs by at least two distinct ways: a dissociation of histone octamer or sequential dissociations of tetramers. These observations help us to develop the molecular mechanisms of nucleosome dynamics and also demonstrate the ability of fast-scanning AFM for the analysis of dynamic protein-DNA interaction in sub-seconds time scale.
Cell Biochemistry and Biophysics | 2004
Kohji Hizume; Shige H. Yoshimura; Kunio Takeyasu
Nucleosome is the most basic structural unit of eukaryotic chromosome, forming an 11 nm “beads-on-a-string” fiber. The molecular mechanism of chromatin folding toward higher-order structures (30 nm and thicker fibers) is speculative; however, it is thought to be critical for the regulation of transcription, replication, and chromosome propagation. We examined the relationship between the efficiency of the nucleosome formation and the physical properties of the template DNA. A series of plasmid DNA with different lengths (3, 5, 31, 56 or 106 kb) were prepared and, together with purified histones, used for the reconstitution of chromatin fibers by a salt-dialysis method. The reconstituted chromatin fibers were visualized and analyzed by atomic force microscopy (AFM). Based on the AFM images, the efficiency of the reconstitution was dependent on the length and the negative superhelical strain of the DNA used (i.e., the longer DNA had a higher efficiency in the reconstitution, because the longer plasmids retain much higher superhelical density than the shorter ones). These results suggest that the nucleosome dynamics are tightly coupled with the DNA superhelicity. This was further supported by the fact that the linearized or topoisomerase I-treated plasmids (relaxed circular) showed very low efficiency. Namely, the negative supercoiling promoted the efficient formation of the nucleosome but the positive supercoiling strongly inhibited it.
Nucleic Acids Research | 2007
Kohji Hizume; Sumiko Araki; Kenichi Yoshikawa; Kunio Takeyasu
TopoisomeraseII (Topo II) is a major component of chromosomal scaffolds and essential for mitotic chromosome condensation, but the mechanism of this action remains unknown. Here, we used an in vitro chromatin reconstitution system in combination with atomic force and fluorescence microscopic analyses to determine how Topo II affects chromosomal structure. Topo II bound to bare DNA and clamped the two DNA strands together, even in the absence of ATP. In addition, Topo II promoted chromatin compaction in a manner dependent on histone H1 but independent of ATP. Histone H1-induced 30-nm chromatin fibers were converted into a large complex by Topo II. Fluorescence microscopic analysis of the Brownian motion of chromatin stained with 4′,6-diamidino-2-phenylindole showed that the reconstituted chromatin became larger following the addition of Topo II in the presence but not the absence of histone H1. Based on these findings, we propose that chromatin packing is triggered by histone H1-dependent, Topo II-mediated clamping of DNA strands.
Pflügers Archiv: European Journal of Physiology | 2008
Yasuhiro Hirano; Hirohide Takahashi; Masahiro Kumeta; Kohji Hizume; Yuya Hirai; Shotaro Otsuka; Shige H. Yoshimura; Kunio Takeyasu
The recent technical development of atomic force microscopy (AFM) has made nano-biology of the nucleus an attractive and promising field. In this paper, we will review our current understanding of nuclear architecture and dynamics from the structural point of view. Especially, special emphases will be given to: (1) How to approach the nuclear architectures by means of new techniques using AFM, (2) the importance of the physical property of DNA in the construction of the higher-order structures, (3) the significance and implication of the linker and core histones and the nuclear matrix/scaffold proteins for the chromatin dynamics, (4) the nuclear proteins that contribute to the formation of the inner nuclear architecture. Spatio-temporal analyses using AFM, in combination with biochemical and cell biological approaches, will play important roles in the nano-biology of the nucleus, as most of nuclear structures and events occur in nanometer, piconewton and millisecond order. The new applications of AFM, such as recognition imaging, fast-scanning imaging, and a variety of modified cantilevers, are expected to be powerful techniques to reveal the nanostructure of the nucleus.
Ultramicroscopy | 2009
Kohji Hizume; Tonau Nakai; Sumiko Araki; Eloise Prieto; Kenichi Yoshikawa; Kunio Takeyasu
In order to reveal the roles of histone tails in the formation of higher-order chromatin structures, we employed atomic force microscopy (AFM), and an in vitro reconstitution system to examine the properties of reconstituted chromatin composed of tail-less histones and a long DNA (106-kb plasmid) template. The tail-less nucleosomes did not aggregate at high salt concentrations or with an excess amount of core histones, in contrast with the behavior of nucleosomal arrays composed of nucleosomes containing normal, N-terminal tails. Analysis of our nucleosome distributions reveals that the attractive interaction between tail-less nucleosomes is weakened. Addition of linker histone H1 into the tail-less nucleosomal array failed to promote the formation of 30nm chromatin fibers that are usually formed in the normal nucleosomal array. These results demonstrate that the attractive interaction between nucleosomes via histone tails plays a critical role in the formation of the uniform 30-nm chromatin fiber.
EPL | 2005
Tonau Nakai; Kohji Hizume; Shige H. Yoshimura; Kunio Takeyasu; Kenichi Yoshikawa
By observing reconstituted chromatin by fluorescence microscopy (FM) and atomic force microscopy (AFM), we found that the density of nucleosomes exhibits a bimodal profile, i.e., there is a large transition between the dense and dispersed states in reconstituted chromatin. Based on an analysis of the spatial distribution of nucleosome cores, we deduced an effective thermodynamic potential as a function of the nucleosome-nucleosome distance. This enabled us to interpret the folding transition of reconstituted chromatin in terms of a first-order phase transition. This mechanism for the condensation of chromatin is discussed in terms of its biological significance.
Biochemistry | 2017
Kohji Hizume; Hiroaki Kominami; Kei Kobayashi; Hirofumi Yamada; Hiroyuki Araki
The formation of the pre-replicative complex (pre-RC) during the G1 phase, which is also called the licensing of DNA replication, is the initial and essential step of faithful DNA replication during the subsequent S phase. It is widely accepted that in the pre-RC, double-stranded DNA passes through the holes of two ring-shaped minichromosome maintenance (MCM) 2-7 hexamers; however, the spatial organization of the DNA and proteins involved in pre-RC formation is unclear. Here we reconstituted the pre-RC from purified DNA and proteins and visualized the complex using atomic force microscopy (AFM). AFM revealed that the MCM double hexamers formed elliptical particles on DNA. Analysis of the angle of binding of DNA to the MCM double hexamer suggests that the DNA does not completely pass through both holes of the MCM hexamers, possibly because the DNA exited from the gap between Mcm2 and Mcm5. A DNA loop fastened by the MCM double hexamer was detected in pre-RC samples reconstituted from purified proteins as well as those purified from yeast cells, suggesting a higher-order architecture of the loaded MCM hexamers and DNA strands.
Bioscience, Biotechnology, and Biochemistry | 2012
Eloise Prieto; Kohji Hizume; Toshiro Kobori; Shige H. Yoshimura; Kunio Takeyasu
Histones are highly conserved proteins among eukaryotes. However, yeast histones are more divergent in their sequences. In particular, the histone tail regions of the fission yeast, Schizosaccharomyces pombe, have fewer lysine residues, making their charges less positive than those of higher eukaryotes. In addition, the S. pombe chromatin lacks linker histones. How these factors affected yeast chromatin folding was analysed by biochemical reconstitution in combination with atomic force microscopy. Reconstitution of a nucleosome array showed that S. pombe chromatin has a more open structure similar to reconstituted human acetylated chromatin. The S. pombe nucleosomal array formed thinner fibers than those of the human nucleosomal array in the presence of mammalian linker histone H1. Such S. pombe fibers were more comparable to human acetylated fibers. These findings suggest that the core histone charges would determine the intrinsic characteristics of S. pombe chromatin and affect inter-nucleosomal interactions.