Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koichi Chida is active.

Publication


Featured researches published by Koichi Chida.


American Journal of Roentgenology | 2010

Radiation dose to the pediatric cardiac catheterization and intervention patient.

Koichi Chida; Tadayuki Ohno; Shuhei Kakizaki; Mika Takegawa; Hiroko Yuuki; Mitsuru Nakada; Shoki Takahashi; Masayuki Zuguchi

OBJECTIVE The radiation dose from cardiac catheterization is particularly relevant when treating children because of their greater radiosensitivity compared with adults. Moreover, cardiac catheterization is being used increasingly for interventional radiology procedures, possibly resulting in higher patient radiation doses. This article reports the radiation doses and related factors, such as fluoroscopy time, for children who underwent cardiac catheterization and children who underwent other interventional radiology procedures. MATERIALS AND METHODS We evaluated 239 consecutive patients who underwent cardiac catheterization (n = 205) or another interventional radiology procedure (n = 34) for which the dose-area product (DAP) was measured. The number of cine runs and fluoroscopic time for each procedure and the body mass index and body weight of each patient were recorded. We also used the double product combined with body weight, which is the weight- fluoroscopic time product. RESULTS The average DAP ± SD of cardiac catheterization and of an interventional radiology procedure was 1,702.6 ± 2,110.1 cGy × cm² and 2,242.2 ± 2,509.4 cGy × cm², respectively. The average fluoroscopic time ± SD of cardiac catheterization and of an interventional radiology procedure was 24.1 ± 16.8 minutes and 37.2 ± 20.0 minutes. For children who underwent cardiac catheterization and those who underwent an interventional radiology procedure, a strong correlation was seen between the DAP and weight-fluoroscopic time product (cardiac catheterization, r = 0.906; interventional radiology procedure, r = 0.885) and a good correlation was detected between the DAP and weight (r = 0.819 and 0.895, respectively). CONCLUSION There was a good correlation between the DAP and weight and between DAP and weight-fluoroscopic time product for children who underwent cardiac catheterization or an interventional radiology procedure. Therefore, body weight is important for determining radiation dose to children undergoing cardiac catheterization or an interventional radiology procedure. The normalized DAP (i.e., DAP divided by body weight), fluoroscopy time, and number of cine runs were greater in children who underwent an interventional radiology procedure than in those who underwent cardiac catheterization. Therefore, the radiation dose to children from interventional radiology procedures is a more critical issue.


American Journal of Roentgenology | 2009

Radiation Dose of Interventional Radiology System Using a Flat-Panel Detector

Koichi Chida; Yohei Inaba; Haruo Saito; Tadashi Ishibashi; Shoki Takahashi; Masahiro Kohzuki; Masayuki Zuguchi

OBJECTIVE Currently, cardiac interventional radiology equipment has tended toward using flat-panel detectors (FPDs) instead of image intensifiers (IIs) because FPDs offer better imaging performance. However, the radiation dose from an FPD in cardiac interventional radiology is not clear. The purpose of our study was to measure the radiation doses during cineangiography and fluoroscopy of many cardiac radiology systems that use FPDs or IIs, in clinical settings. MATERIALS AND METHODS This study examined 20 radiology systems in 15 cardiac catheterization laboratories (11 used FPD and nine used II). The entrance surface doses with digital cineangiography and fluoroscopy were compared for the 20 systems using acrylic plates (20-cm thick) and a skin dose monitor. RESULTS For fluoroscopy, the average entrance surface doses of the 20-cm-thick acrylic plates were identical for FPD (average +/- SD, 16.63 +/- 7.89 mGy/min; range, 5.7-26.4 mGy/min; maximum/minimum, 4.63) and II (17.81 +/- 12.52 mGy/min; range, 6.5-42.2 mGy/min; maximum/minimum, 6.49) (p = 0.799). For digital cineangiography, the average entrance surface dose of the 20-cm-thick acrylic plate was slightly lower with FPD (29.68 +/- 16.40 mGy/10 s; range, 8.9-58.5 mGy/10 s; maximum/minimum, 6.57) than with II (38.50 +/- 33.71 mGy/10 s; range, 15.2-117.1 mGy/10 s; maximum/minimum, 7.70), although the difference was not significant (p = 0.487). CONCLUSION We found that the average entrance doses of cineangiography and fluoroscopy in FPD systems were not significantly different from those in II systems. Hence, FPDs did not inherently reduce the radiation dose, although FPDs possess good detective quantum efficiency. Therefore, to reduce the radiation dose of cardiac interventional radiology systems, even FPD systems, practical measures are necessary.


American Journal of Roentgenology | 2013

Occupational Dose in Interventional Radiology Procedures

Koichi Chida; Yuji Kaga; Yoshihiro Haga; Nozomi Kataoka; Eriko Kumasaka; Taiichiro Meguro; Masayuki Zuguchi

OBJECTIVE Interventional radiology tends to involve long procedures (i.e., long fluoroscopic times). Therefore, radiation protection for interventional radiology staff is an important issue. This study describes the occupational radiation dose for interventional radiology staff, especially nurses, to clarify the present annual dose level for interventional radiology nurses. MATERIALS AND METHODS We compared the annual occupational dose (effective dose and dose equivalent) among interventional radiology staff in a hospital where 6606 catheterization procedures are performed annually. The annual occupational doses of 18 physicians, seven nurses, and eight radiologic technologists were recorded using two monitoring badges, one worn over and one under their lead aprons. RESULTS The annual mean ± SD effective dose (range) to the physicians, nurses, and radiologic technologists using two badges was 3.00 ± 1.50 (0.84-6.17), 1.34 ± 0.55 (0.70-2.20), and 0.60 ± 0.48 (0.02-1.43) mSv/y, respectively. Similarly, the annual mean ± SD dose equivalent range was 19.84 ± 12.45 (7.0-48.5), 4.73 ± 0.72 (3.9-6.2), and 1.30 ± 1.00 (0.2-2.7) mSv/y, respectively. The mean ± SD effective dose for the physicians was 1.02 ± 0.74 and 3.00 ± 1.50 mSv/y for the one- and two-badge methods, respectively (p < 0.001). Similarly, the mean ± SD effective dose for the nurses (p = 0.186) and radiologic technologists (p = 0.726) tended to be lower using the one-badge method. CONCLUSION The annual occupational dose for interventional radiology staff was in the order physicians > nurses > radiologic technologists. The occupational dose determined using one badge under the apron was far lower than the dose obtained with two badges in both physicians and nonphysicians. To evaluate the occupational dose correctly, we recommend use of two monitoring badges to evaluate interventional radiology nurses as well as physicians.


Acta Radiologica | 2012

The necessity of follow-up for radiation skin injuries in patients after percutaneous coronary interventions: radiation skin injuries will often be overlooked clinically

Mamoru Kato; Koichi Chida; Tadaya Sato; Hajime Oosaka; Tetsuo Tosa; Masahito Munehisa; Ken Kadowaki

Background Percutaneous coronary intervention (PCI) offers great benefit that could improve a patients quality of life. However, numerous case reports of patient radiation injury resulting from PCI are being published, these reports likely represent a small fraction of the actual cases. Purpose To demonstrate the appropriate duration of patient follow-up after PCI to identify radiation effects. Material and Methods We evaluated 400 consecutive PCIs. The radiation dose (dose-area product, cumulative dose, maximum skin dose), number of cine runs, and fluoroscopic time were recorded for all patients. The skin on the patients’ backs was reviewed periodically after PCI. Results Radiation skin effects occurred in six patients from PCI of the right coronary artery in chronic total occlusion (CTO) patients (mild erythema; occurrence rate 1.5%). Skin injury in two patients appeared in cycles. In most cases, erythema was vividly seen at 4 weeks after PCI. Conclusion Careful observation for skin injury is needed. At a few days following PCI, early erythema can be detected through careful observation by well-trained staff. At 7-10 days after PCI, most erythematous pigmentation can be detected. At 4 weeks after PCI, most skin erythema appears clearly, however, some cases of skin erythema occur without back pain. After that, follow-up every 6 months is needed to detect the reappearance of erythema.


American Journal of Roentgenology | 2011

Clarifying and Visualizing Sources of Staff-Received Scattered Radiation in Interventional Procedures

Koichi Chida; Takeshi Takahashi; Daisuke Ito; Hirotaka Shimura; Ken Takeda; Masayuki Zuguchi

OBJECTIVE Interventional radiology tends to involve long procedures (i.e., long fluoroscopic times). Therefore, radiation protection for interventional radiology physicians and staff is an important issue. We examine and identify sources of staff-received scattered radiation in an interventional radiology system using a pinhole camera method. CONCLUSION Physicians and staff are exposed primarily to two sources of scattered radiation: radiation scattered from the patient and radiation from the cover of the x-ray beam collimating device. Those who stand close to the patient and the x-ray beam collimating device, where scattered radiation is higher, have higher radiation doses. Thus, radiation protection during interventional radiology procedures is an important problem.


Radiological Physics and Technology | 2011

Comparison of dose at an interventional reference point between the displayed estimated value and measured value

Koichi Chida; Yohei Inaba; Yoshiaki Morishima; Masaaki Taura; Ayako Ebata; Isao Yanagawa; Ken Takeda; Masayuki Zuguchi

Today, interventional radiology (IR) X-ray units are required for display of doses at an interventional reference point (IRP) for the operator (IR physician). The dose displayed at the IRP (the reference dose) of an X-ray unit has been reported to be helpful for characterizing patient exposure in real time. However, no detailed report has evaluated the accuracy of the reference doses displayed on X-ray equipment. Thus, in this study, we compared the displayed reference dose to the actual measured value in many IR X-ray systems. Although the displayed reference doses of many IR X-ray systems agreed with the measured actual values within approximately 15%, the doses of a few IR units were not close. Furthermore, some X-ray units made in Japan displayed reference doses quite different from the actual measured value, probably because the reference point of these units differs from the International Electrotechnical Commission standard. Thus, IR physicians should pay attention to the location of the IRP of the displayed reference dose in Japan. Furthermore, physicians should be aware of the accuracy of the displayed reference dose of the X-ray system that they use for IR. Thus, regular checks of the displayed reference dose of the X-ray system are important.


Radiation Protection Dosimetry | 2014

Fundamental study on the characteristics of a radiophotoluminescence glass dosemeter with no energy compensation filter for measuring patient entrance doses in cardiac interventional procedures

Mamoru Kato; Koichi Chida; Takashi Moritake; Yasuhiro Koguchi; Tadaya Sato; Hajime Oosaka; Tetsuo Tosa; Ken Kadowaki

Cardiac interventional procedures have been increasing year by year. However, radiation skin injuries have been still reported. There is a necessity to measure the patient entrance skin dose (ESD), but an accurate dose measurement method has not been established. To measure the ESD, a lot of radiophotoluminescence dosemeters (RPLDs) provide an accurate measurement of the direct actual ESD at the points they are arrayed. The purpose of this study was to examine the characteristics of RPLD to measure the ESD. As a result, X-ray permeable RPLD (with no tin filter) did not interfere with the percutaneous coronary intervention procedure. The RPLD also had good fundamental performance characteristics. Although the RPLD had a little energy dependence, it showed excellent dose and dose-rate linearity, and good angular dependence. In conclusion, by calibrating the energy dependence, RPLDs are useful dosemeter to measure the ESD in cardiac intervention.


Radiation Protection Dosimetry | 2011

Comparison of the radiation dose in a cardiac IVR X-ray system

Youhei Inaba; Koichi Chida; Kazutoshi Shirotori; Hirotaka Shimura; Isao Yanagawa; Masayuki Zuguchi; Shoki Takahashi

In this study, the entrance surface dose rates received by a phantom during cineangiography and fluoroscopy were compared. The X-ray conditions used in the measurements were those normally used in facilities performing percutaneous coronary intervention. Although, today, the entrance surface doses (cineangiography and fluoroscopy) of X-ray equipment used for cardiac interventional radiology (IVR) tends to be lower than they were previously, some equipment produces a high radiation dose. Therefore, the X-ray equipment used for cardiac IVR procedures must be maintained in good repair and must be carefully calibrated. In addition, periodic measurement of the radiation dose from the X-ray equipment used for both cineangiography and fluoroscopy for cardiac IVR is necessary. If the radiation dose of the X-ray system in use is too high, the IVR staff should determine the reason and make an effort to reduce it. Hence, the IVR staff must be adequately trained in radiation protection.


American Journal of Roentgenology | 2015

Novel Dosimeter Using a Nontoxic Phosphor for Real-Time Monitoring of Patient Radiation Dose in Interventional Radiology

Masaaki Nakamura; Koichi Chida; Masayuki Zuguchi

OBJECTIVE To our knowledge, no feasible method exists for real-time measurement of the radiation dose given to the patient during interventional radiology (IR) procedures. Therefore, we produced a prototype of a real-time dosimeter for patients undergoing IR that uses a nontoxic phosphor. The basic characteristics of the real-time dosimeter prototype are comparable to those of the previously used skin dose monitor, with the exception that our prototype has the distinct advantage of including multichannel sensors. CONCLUSION The novel real-time dosimeter system is expected to be useful for measuring patient exposure to the radiation dose during IR procedures.


Radiation Protection Dosimetry | 2012

Physician-received scatter radiation with angiography systems used for interventional radiology: comparison among many X-ray systems

Koichi Chida; Yoshiaki Morishima; Youhei Inaba; Masaaki Taura; Ayako Ebata; Ken Takeda; Hirotaka Shimura; Masayuki Zuguchi

Radiation protection for interventional radiology (IR) physicians is very important. Current IR X-ray systems tend to use flat-panel detectors (FPDs) rather than image intensifiers (IIs). The purpose of this study is to test the hypothesis that there is no difference in physician-received scatter radiation (PRSR) between FPD systems and II systems. This study examined 20 X-ray systems in 15 cardiac catheterisation laboratories (11 used a FPD and 9 used an II). The PRSR with digital cineangiography and fluoroscopy were compared among the 20 X-ray systems using a phantom and a solid-state-detector electronic pocket dosemeter. The maximum PRSR exceeded the minimum PRSR by ~12-fold for cineangiography and ~9-fold for fluoroscopy. For both fluoroscopy and digital cineangiography, the PRSR had a statistically significant positive correlation with the entrance surface dose (fluoroscopy, r = 0.87; cineangiography, r = 0.86). There was no statistically significant difference between the average PRSR of FPDs and IIs during either digital cineangiography or fluoroscopy. There is a wide range of PRSR among the radiography systems evaluated. The PRSR correlated well with the entrance surface dose of the phantom in 20 X-ray units used for IR. Hence, decreasing the dose to the patient will also decrease the dose to staff.

Collaboration


Dive into the Koichi Chida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge