Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koichiro Awai is active.

Publication


Featured researches published by Koichiro Awai.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana

Koichiro Awai; Eric Maréchal; Maryse A. Block; Delphine Brun; Tatsuru Masuda; Hiroshi Shimada; Ken-ichiro Takamiya; Hiroyuki Ohta; Jacques Joyard

In Arabidopsis, monogalactosyldiacylglycerol (MGDG) is synthesized by a multigenic family of MGDG synthases consisting of two types of enzymes differing in their N-terminal portion: type A (atMGD1) and type B (atMGD2 and atMGD3). The present paper compares type B isoforms with the enzymes of type A that are known to sit in the inner membrane of plastid envelope. The occurrence of types A and B in 16:3 and 18:3 plants shows that both types are not specialized isoforms for the prokaryotic and eukaryotic glycerolipid biosynthetic pathways. Type A atMGD1 gene is abundantly expressed in green tissues and along plant development and encodes the most active enzyme. Its mature polypeptide is immunodetected in the envelope of chloroplasts from Arabidopsis leaves after cleavage of its transit peptide. atMGD1 is therefore likely devoted to the massive production of MGDG required to expand the inner envelope membrane and build up the thylakoids network. Transient expression of green fluorescent protein fusions in Arabidopsis leaves and in vitro import experiments show that type B precursors are targeted to plastids, owing to a different mechanism. Noncanonical addressing peptides, whose processing could not be assessed, are involved in the targeting of type B precursors, possibly to the outer envelope membrane where they might contribute to membrane expansion. Expression of type B enzymes was higher in nongreen tissues, i.e., in inflorescence (atMGD2) and roots (atMGD3), where they conceivably influence the eukaryotic structure prominence in MGDG. In addition, their expression of type B enzymes is enhanced under phosphate deprivation.


Nature Communications | 2014

Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation

Koichi Hori; Fumito Maruyama; Takatomo Fujisawa; Tomoaki Togashi; Nozomi Yamamoto; Mitsunori Seo; Syusei Sato; Takuji Yamada; Hiroshi Mori; Naoyuki Tajima; Takashi Moriyama; Masahiko Ikeuchi; Mai Watanabe; Hajime Wada; Koichi Kobayashi; Masakazu Saito; Tatsuru Masuda; Yuko Sasaki-Sekimoto; Kiyoshi Mashiguchi; Koichiro Awai; Mie Shimojima; Shinji Masuda; Masako Iwai; Takashi Nobusawa; Takafumi Narise; Satoshi Kondo; Hikaru Saito; Ryoichi Sato; Masato Murakawa; Yuta Ihara

The colonization of land by plants was a key event in the evolution of life. Here we report the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum (Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from aquatic algae to land plants. Comparison of the genome sequence with that of other algae and land plants demonstrate that K. flaccidum acquired many genes specific to land plants. We demonstrate that K. flaccidum indeed produces several plant hormones and homologues of some of the signalling intermediates required for hormone actions in higher plants. The K. flaccidum genome also encodes a primitive system to protect against the harmful effects of high-intensity light. The presence of these plant-related systems in K. flaccidum suggests that, during evolution, this alga acquired the fundamental machinery required for adaptation to terrestrial environments.


FEBS Letters | 2000

Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana

Naoki Oosawa; Tatsuru Masuda; Koichiro Awai; Naoki Fusada; Hiroshi Shimada; Hiroyuki Ohta; Ken-ichiro Takamiya

In Arabidopsis thaliana, we identified a novel gene of a NADPH‐protochlorophyllide oxidoreductase (POR) isoform, which catalyzes the light‐dependent protochlorophyllide a reduction in the chlorophyll (Chl) biosynthetic pathway. The deduced amino acid sequence of the novel POR isoform (PORC) showed significant identities (∼75%) with the previously isolated two POR isoforms of A. thaliana. Contrasting with these POR isoforms, the PORC transcript increased in etiolated seedlings by illumination, and was dominantly expressed in immature and mature tissues. The present results demonstrated that Chl biosynthesis and chloroplast biogenesis in A. thaliana are controlled by three POR isoforms, which are differentially controlled by light and development.


Plant Journal | 2009

Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation

Koichi Kobayashi; Koichiro Awai; M. Nakamura; Akira Nagatani; Tatsuru Masuda; Hiroyuki Ohta

Mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively) constitute the bulk of membrane lipids in plant chloroplasts. Mutant analyses in Arabidopsis have shown that these galactolipids are essential for chloroplast biogenesis and photoautotrophic growth. Moreover, these non-phosphorous lipids are proposed to participate in low-phosphate (Pi) adaptations. Under Pi-limited conditions, a drastic accumulation of DGDG occurs concomitantly with a large reduction in membrane phospholipids, suggesting that plants substitute DGDG for phospholipids during Pi starvation. Previously, we reported that among the three MGDG synthase genes (MGD1, MGD2 and MGD3), the type-B MGD2 and MGD3 are upregulated in parallel with DGDG synthase genes during Pi starvation. Here, we describe the identification and characterization of T-DNA insertional mutants of Arabidopsis type-B MGD genes. Under Pi-starved conditions, the mgd3-1 mutant showed a drastic reduction in DGDG accumulation, particularly in the root, indicating that MGD3 is the main isoform responsible for DGDG biosynthesis in Pi-starved roots. Moreover, in the roots of mgd2 mgd3 plants, Pi stress-induced accumulation of DGDG was almost fully abolished, showing that type-B MGD enzymes are essential for membrane lipid remodeling in Pi-starved roots. Reductions in fresh weight, root growth and photosynthetic performance were also observed in these mutants under Pi-starved conditions. These results demonstrate that Pi stress-induced membrane lipid remodeling is important in plant growth during Pi starvation. The widespread distribution of type-B MGD genes in land plants suggests that membrane lipid remodeling mediated by type-B MGD enzymes is a potent adaptation to Pi deficiency for land plants.


Plant Physiology | 2004

Arabidopsis Type B Monogalactosyldiacylglycerol Synthase Genes Are Expressed during Pollen Tube Growth and Induced by Phosphate Starvation

Koichi Kobayashi; Koichiro Awai; Ken-ichiro Takamiya; Hiroyuki Ohta

The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) constitute the major glycolipids of the thylakoid membranes in chloroplasts. In Arabidopsis, the formation of MGDG is catalyzed by a family of three MGDG synthases, which are encoded by two types of genes, namely type A (atMGD1) and type B (atMGD2 and atMGD3). Although the roles of the type A enzyme have been intensively investigated in several plants, little is known about the contribution of type B enzymes to MGDG synthesis in planta. From our previous analyses, unique expression profiles of the three MGDG synthase genes were revealed in various organs and developmental stages. To characterize the expression profiles in more detail, we performed histochemical analysis of these genes using β-glucuronidase (GUS) assays in Arabidopsis. The expression of atMGD1::GUS was detected highly in all green tissues, whereas the expression of atMGD2::GUS and atMGD3::GUS was observed only in restricted parts, such as leaf tips. In addition, intense staining was detected in pollen grains of all transformants. We also detected GUS activity in the pollen tubes of atMGD2::GUS and atMGD3::GUS transformants grown in wild-type stigmas but not in atMGD1::GUS, suggesting that type B MGDG synthases may have roles during pollen germination and pollen tube growth. GUS analysis also revealed that expression of atMGD2 and atMGD3, but not atMGD1, are strongly induced during phosphate starvation, particularly in roots. Because only DGDG accumulates in roots during phosphate deprivation, type B MGDG synthases may be acting primarily to supply MGDG as a precursor for DGDG synthesis.


Plant Physiology | 2006

Comparative genomic analysis revealed a gene for monoglucosyldiacylglycerol synthase, an enzyme for photosynthetic membrane lipid synthesis in cyanobacteria

Koichiro Awai; Takatoshi Kakimoto; Chie Awai; Takakazu Kaneko; Yuki Nakamura; Ken-ichiro Takamiya; Hajime Wada; Hiroyuki Ohta

Cyanobacteria have a thylakoid lipid composition very similar to that of plant chloroplasts, yet cyanobacteria are proposed to synthesize monogalactosyldiacylglycerol (MGDG), a major membrane polar lipid in photosynthetic membranes, by a different pathway. In addition, plant MGDG synthase has been cloned, but no ortholog has been reported in cyanobacterial genomes. We report here identification of the gene for monoglucosyldiacylglycerol (MGlcDG) synthase, which catalyzes the first step of galactolipid synthesis in cyanobacteria. Using comparative genomic analysis, candidates for the gene were selected based on the criteria that the enzyme activity is conserved between two species of cyanobacteria (unicellular [Synechocystis sp. PCC 6803] and filamentous [Anabaena sp. PCC 7120]), and we assumed three characteristics of the enzyme; namely, it harbors a glycosyltransferase motif, falls into a category of genes with unknown function, and shares significant similarity in amino acid sequence between these two cyanobacteria. By a motif search of all genes of Synechocystis, BLAST searches, and similarity searches between these two cyanobacteria, we identified four candidates for the enzyme that have all the characteristics we predicted. When expressed in Escherichia coli, one of the Synechocystis candidate proteins showed MGlcDG synthase activity in a UDP-glucose-dependent manner. The ortholog in Anabaena also showed the same activity. The enzyme was predicted to require a divalent cation for its activity, and this was confirmed by biochemical analysis. The MGlcDG synthase and the plant MGDG synthase shared low similarity, supporting the presumption that cyanobacteria and plants utilize different pathways to synthesize MGDG.


Lipids | 2003

Digalactosyldiacylglycerol is a major glycolipid in floral organs of Petunia hybrida.

Yuki Nakamura; Hitomi Arimitsu; Yoshiki Yamaryo; Koichiro Awai; Tatsuru Masuda; Hiroshi Shimada; Ken-ichiro Takamiya; Hiroyuki Ohta

In higher plants, glycolipids such as monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are major components of chloroplast membranes in leaves. A recent study identified an isoform of MGDG synthase that is expressed specifically in floral organs, suggesting a novel function for glycolipids in flowers. To elucidate the localization and developmental changes of glycolipids and their biosynthetic activities in flowers; we carried out a series of analytical studies with Petunia hybrida. The results showed that the biosynthetic activities of galactolipid synthesis, particularly for DGDG, increased during flower development. Among the floral organs, the pistil had the highest galactolipid synthetic activity. Its specific activity for incorporation of UDP-galactose to yield galactolipids was estimated to be more than twice that of leaves, which are the major site of galactolipid synthesis in plant tissues. Analysis of lipid contents of pistils revealed that they contained higher amounts of galactolipids than other floral organs. Moreover, DGDG was more abundant than MGDG in both pistils and petals. These results show that DGDG is a major glycolipid in floral organs and that DGDG biosynthetic activity is highly upregulated in the pistils and petals of Petunia flowers.


Photosynthesis Research | 2002

Identification of two differentially regulated isoforms of protochlorophyllide oxidoreductase (POR) from tobacco revealed a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms.

Tatsuru Masuda; Naoki Fusada; Toshihiko Shiraishi; Hirofumi Kuroda; Koichiro Awai; Hiroshi Shimada; Hiroyuki Ohta; Ken-ichiro Takamiya

NADPH-protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide a in the chlorophyll biosynthetic pathway. Here, we identified two distinct POR cDNAs from tobacco. Both POR isoforms are encoded by a respective single copy gene in tobacco genome. The overall deduced amino acid sequences of two tobacco cDNAs, designated here POR1 and POR2, displayed significant identities (∼75%), but showed different patterns of light and developmental regulation. In contrast to the previously isolated POR isoforms of Arabidopsis thaliana and barley, the expression of both tobacco POR isoforms were not negatively regulated by light and persisted in matured green tissues. Furthermore, the expression of both genes appeared to be regulated by a diurnal regulation. These results show a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Furthermore, phylogenetic analysis including tobacco revealed that POR gene family is differentially represented by angiosperms, most of which is probably caused by independent gene duplication in individual plant. Present results imply a modification of the previous concept that chlorophyll biosynthesis and chloroplast differentiation in angiosperms are ubiquitously controlled by unique functions of two POR isoforms.


Biochemical Society Transactions | 2000

Genome-wide expression-monitoring of jasmonate-responsive genes of Arabidopsis using cDNA arrays.

Y. Sasaki; E. Asamizu; D. Shibata; Y. Nakamura; T. Kaneko; Koichiro Awai; Tatsuru Masuda; Hiroshi Shimada; K-i. Takamiya; S. Tabata; Hiroyuki Ohta

Jasmonates are generally considered to mediate signalling, such as defence responses, flowering and senescence. However, factors involved in the jasmonate signal-transduction pathway remain unclear. To clarify the functions and signalling mechanisms of jasmonates on a genome-wide level, we adopted a cDNA macroarray technique. We prepared nylon filters of a cDNA macroarray on which 2880 independent expressed sequence tag clones of Arabidopsis were blotted, and hybridized (33)P-labelled single-strand DNAs synthesized from mRNAs of methyl jasmonate (MeJA)-treated and untreated Arabidopsis plants to the nylon filters. By analysing the data from the cDNA macroarray, we identified many function-known and unknown genes as MeJA-responsive genes, and confirmed that the profiles of the expression showed good agreement with Northern-blot analysis. These results demonstrate the efficiency of the cDNA macroarray for systematically analysing jasmonate-responsive genes on a genome-wide scale.


Biochemical and Biophysical Research Communications | 2014

Fatty alcohols can complement functions of heterocyst specific glycolipids in Anabaena sp. PCC 7120

Heli Siti Munawaroh Halimatul; Shigeki Ehira; Koichiro Awai

Heterocyst glycolipid synthase (HglT) catalyzes the final step of heterocyst glycolipid (Hgl) biosynthesis, in which a glucose is transferred to the aglycone (fatty alcohol). Here we describe the isolation of hglT null mutants. These mutants lacked Hgls under nitrogen-starved conditions and instead accumulated fatty alcohols. Differentiated heterocyst cells in the mutants were morphologically indistinguishable from those of the wild-type cells. Interestingly, the mutants grew under nitrogen starvation but fixed nitrogen with lower nitrogenase activity than did the wild-type. The mutants had a pale green phenotype with a decreased chlorophyll content, especially under nitrogen-starved conditions. These results suggest that the glucose moiety of the Hgls may be necessary for optimal protection against oxygen influx but is not essential and that aglycones can function as barriers against oxygen influx in the heterocyst cells.

Collaboration


Dive into the Koichiro Awai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken-ichiro Takamiya

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiki Yamaryo

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mie Shimojima

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daisuke Kanai

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jacques Joyard

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar

Daisuke Shibata

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge