Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koichiro Mihara is active.

Publication


Featured researches published by Koichiro Mihara.


Journal of Biological Chemistry | 2011

Neutrophil Elastase Acts as a Biased Agonist for Proteinase-activated Receptor-2 (PAR2)

Koichiro Mihara; Hyunjae Chung; Bernard Renaux; Chang S. Lau; Daniel A. Muruve; Kathryn DeFea; Michel Bouvier; Morley D. Hollenberg

Human neutrophil proteinases (elastase, proteinase-3, and cathepsin-G) are released at sites of acute inflammation. We hypothesized that these inflammation-associated proteinases can affect cell signaling by targeting proteinase-activated receptor-2 (PAR2). The PAR family of G protein-coupled receptors is triggered by a unique mechanism involving the proteolytic unmasking of an N-terminal self-activating tethered ligand (TL). Proteinases can either activate PAR signaling by unmasking the TL sequence or disarm the receptor for subsequent enzyme activation by cleaving downstream from the TL sequence. We found that none of neutrophil elastase, cathepsin-G, and proteinase-3 can activate Gq-coupled PAR2 calcium signaling; but all of these proteinases can disarm PAR2, releasing the N-terminal TL sequence, thereby preventing Gq-coupled PAR2 signaling by trypsin. Interestingly, elastase (but neither cathepsin-G nor proteinase-3) causes a TL-independent PAR2-mediated activation of MAPK that, unlike the canonical trypsin activation, does not involve either receptor internalization or recruitment of β-arrestin. Cleavage of synthetic peptides derived from the extracellular N terminus of PAR2, downstream of the TL sequence, demonstrated distinct proteolytic sites for all three neutrophil-derived enzymes. We conclude that in inflammation, neutrophil proteinases can modulate PAR2 signaling by preventing/disarming the Gq/calcium signal pathway and, via elastase, can selectively activate the p44/42 MAPK pathway. Our data illustrate a new mode of PAR regulation that involves biased PAR2 signaling by neutrophil elastase and a disarming/silencing effect of cathepsin-G and proteinase-3.


British Journal of Pharmacology | 2014

Biased signalling and proteinase‐activated receptors (PARs): targeting inflammatory disease

Morley D. Hollenberg; Koichiro Mihara; Daniel B. Polley; Jacky Y. Suen; Alan Han; David P. Fairlie

Although it has been known since the 1960s that trypsin and chymotrypsin can mimic hormone action in tissues, it took until the 1990s to discover that serine proteinases can regulate cells by cleaving and activating a unique four‐member family of GPCRs known as proteinase‐activated receptors (PARs). PAR activation involves the proteolytic exposure of its N‐terminal receptor sequence that folds back to function as a ‘tethered’ receptor‐activating ligand (TL). A key N‐terminal arginine in each of PARs 1 to 4 has been singled out as a target for cleavage by thrombin (PARs 1, 3 and 4), trypsin (PARs 2 and 4) or other proteases to unmask the TL that activates signalling via Gq, Gi or G12/13. Similarly, synthetic receptor‐activating peptides, corresponding to the exposed ‘TL sequences’ (e.g. SFLLRN—, for PAR1 or SLIGRL— for PAR2) can, like proteinase activation, also drive signalling via Gq, Gi and G12/13, without requiring receptor cleavage. Recent data show, however, that distinct proteinase‐revealed ‘non‐canonical’ PAR tethered‐ligand sequences and PAR‐activating agonist and antagonist peptide analogues can induce ‘biased’ PAR signalling, for example, via G12/13‐MAPKinase instead of Gq‐calcium. This overview summarizes implications of this ‘biased’ signalling by PAR agonists and antagonists for the recognized roles the PARs play in inflammatory settings.


Molecular Pharmacology | 2009

Agonist-Biased Signaling via Proteinase Activated Receptor-2: Differential Activation of Calcium and Mitogen-Activated Protein Kinase Pathways

Koichiro Mihara; Maneesh Mathur; Moulay Driss Rochdi; Michel Bouvier; Kathryn DeFea; Morley D. Hollenberg

We evaluated the ability of different trypsin-revealed tethered ligand (TL) sequences of rat proteinase-activated receptor 2 (rPAR2) and the corresponding soluble TL-derived agonist peptides to trigger agonist-biased signaling. To do so, we mutated the proteolytically revealed TL sequence of rPAR2 and examined the impact on stimulating intracellular calcium transients and mitogen-activated protein (MAP) kinase. The TL receptor mutants, rPAR2-Leu37Ser38, rPAR2-Ala37–38, and rPAR2-Ala39–42 were compared with the trypsin-revealed wild-type rPAR2 TL sequence, S37LIGRL42—. Upon trypsin activation, all constructs stimulated MAP kinase signaling, but only the wt-rPAR2 and rPAR2-Ala39–42 triggered calcium signaling. Furthermore, the TL-derived synthetic peptide SLAAAA-NH2 failed to cause PAR2-mediated calcium signaling but did activate MAP kinase, whereas SLIGRL-NH2 triggered both calcium and MAP kinase signaling by all receptors. The peptides AAIGRL-NH2 and LSIGRL-NH2 triggered neither calcium nor MAP kinase signals. Neither rPAR2-Ala37–38 nor rPAR2-Leu37Ser38 constructs recruited β-arrestins-1 or -2 in response to trypsin stimulation, whereas both β-arrestins were recruited to these mutants by SLIGRL-NH2. The lack of trypsin-triggered β-arrestin interactions correlated with impaired trypsin-activated TL-mutant receptor internalization. Trypsin-stimulated MAP kinase activation by the TL-mutated receptors was not blocked by inhibitors of Gαi (pertussis toxin), Gαq [N-cyclohexyl-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-c]pyrazole-3-carboxamide (GP2A)], Src kinase [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], or the epidermal growth factor (EGF) receptor [4-(3′-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478)], but was inhibited by the Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2HCl (Y27362). The data indicate that the proteolytically revealed TL sequence(s) and the mode of its presentation to the receptor (tethered versus soluble) can confer biased signaling by PAR2, its arrestin recruitment, and its internalization. Thus, PAR2 can signal to multiple pathways that are differentially triggered by distinct proteinase-revealed TLs or by synthetic signal-selective activating peptides.


Journal of Immunology | 2011

Mucosal Allergic Sensitization to Cockroach Allergens Is Dependent on Proteinase Activity and Proteinase-Activated Receptor-2 Activation

Narcy Arizmendi; Melanie Abel; Koichiro Mihara; Courtney Davidson; Danny Polley; Ahmed Nadeem; Tamer El Mays; Brendan Gilmore; Brian A. Walker; John Gordon; Morley D. Hollenberg; Harissios Vliagoftis

We have shown that proteinase-activated receptor-2 (PAR2) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR2 in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR2. To study the role of PAR2 in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR2 activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR2, mice were exposed intranasally to a receptor-blocking anti-PAR2 Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR2 blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR2 activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR2-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR2 activation may be a general mechanism used by aeroallergens to induce allergic sensitization.


Journal of Biological Chemistry | 2013

Neutrophil elastase and proteinase-3 trigger G-protein biased signaling through proteinase activated receptor-1 (PAR1)

Koichiro Mihara; Bernard Renaux; Mahmoud Saifeddine; Morley D. Hollenberg

Background: Proteinase-activated receptor-1 (PAR1) is a proteolytically activated G protein-coupled receptor. Neutrophil-derived enzymes might regulate PAR1 signaling. Results: Neutrophil elastase and proteinase-3 cleave and activate PAR1 signaling that is distinct from thrombin-triggered responses. Neutrophil elastase and proteinase-3 signaling through PAR1 modulates endothelial cell signaling. Conclusion: Neutrophil enzymes are Gαi-biased agonists for PAR1. Significance: Biased PAR1-activating compounds may prove of value as therapeutic agents to treat cardiovascular and inflammatory diseases. Neutrophil proteinases released at sites of inflammation can affect tissue function by either activating or disarming signal transduction mediated by proteinase-activated receptors (PARs). Because PAR1 is expressed at sites where abundant neutrophil infiltration occurs, we hypothesized that neutrophil-derived enzymes might also regulate PAR1 signaling. We report here that both neutrophil elastase and proteinase-3 cleave the human PAR1 N terminus at sites distinct from the thrombin cleavage site. This cleavage results in a disarming of thrombin-activated calcium signaling through PAR1. However, the distinct non-canonical tethered ligands unmasked by neutrophil elastase and proteinase-3, as well as synthetic peptides with sequences derived from these novel exposed tethered ligands, selectively stimulated PAR1-mediated mitogen-activated protein kinase activation. This signaling was blocked by pertussis toxin, implicating a Gαi-triggered signal pathway. We conclude that neutrophil proteinases trigger biased PAR1 signaling and we describe a novel set of tethered ligands that are distinct from the classical tethered ligand revealed by thrombin. We further demonstrate the function of this biased signaling in regulating endothelial cell barrier integrity.


Molecular Pharmacology | 2016

Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling.

Koichiro Mihara; Mahmoud Saifeddine; Kristina K. Hansen; Renaux B; Polley D; Gibson S; Vanderboor C; Hollenberg

Thrombin is known to signal to cells by cleaving/activating a G–protein–coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggering β–arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.


British Journal of Pharmacology | 2015

GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature

Mahmoud Saifeddine; Mahmoud El-Daly; Koichiro Mihara; Nigel W. Bunnett; Peter McIntyre; Christophe Altier; Morley D. Hollenberg

Transient receptor potential vanilloid‐4 (TRPV4) is a calcium‐permeant ion channel that is known to affect vascular function. The ability of TRPV4 to cause a vasoconstriction in blood vessels has not yet been mechanistically examined. Further in neuronal cells, TRPV4 signalling can be potentiated by GPCR activation. Thus, we studied the mechanisms underlying the vascular contractile action of TRPV4 and the GPCR‐mediated potentiation of such vasoconstriction, both of which are as yet unappreciated aspects of TRPV4 function.


Journal of Biological Chemistry | 2014

Proteinase-activated Receptor 2 (PAR2) Decreases Apoptosis in Colonic Epithelial Cells

Vadim Iablokov; Christina Hirota; Michael A. Peplowski; Koichiro Mihara; Morley D. Hollenberg; Wallace K. MacNaughton

Background: Inflammatory bowel disease management lacks therapies that heal the epithelial barrier. Results: PAR2 activation increases activities of MEK1/2 and PI3K in intestinal epithelial cells, which blocks apoptosis. Conclusion: Cytokine-induced apoptosis in colonic epithelial cells is inhibited by PAR2 signaling. Significance: PAR2 is important in maintaining intestinal epithelial homeostasis. Mucosal biopsies from inflamed colon of inflammatory bowel disease patients exhibit elevated epithelial apoptosis compared with those from healthy individuals, disrupting mucosal homeostasis and perpetuating disease. Therapies that decrease intestinal epithelial apoptosis may, therefore, ameliorate inflammatory bowel disease, but treatments that specifically target apoptotic pathways are lacking. Proteinase-activated receptor-2 (PAR2), a G protein-coupled receptor activated by trypsin-like serine proteinases, is expressed on intestinal epithelial cells and stimulates mitogenic pathways upon activation. We sought to determine whether PAR2 activation and signaling could rescue colonic epithelial (HT-29) cells from apoptosis induced by proapoptotic cytokines that are increased during inflammatory bowel disease. The PAR2 agonists 2-furoyl-LIGRLO (2f-LI), SLIGKV and trypsin all significantly reduced cleavage of caspase-3, -8, and -9, poly(ADP-ribose) polymerase, and the externalization of phosphatidylserine after treatment of cells with IFN-γ and TNF-α. Knockdown of PAR2 with siRNA eliminated the anti-apoptotic effect of 2f-LI and increased the sensitivity of HT-29 cells to cytokine-induced apoptosis. Concurrent inhibition of both MEK1/2 and PI3K was necessary to inhibit PAR2-induced survival. 2f-LI was found to increase phosphorylation and inactivation of pro-apoptotic BAD at Ser112 and Ser136 by MEK1/2 and PI3K-dependent signaling, respectively. PAR2 activation also increased the expression of anti-apoptotic MCL-1. Simultaneous knockdown of both BAD and MCL-1 had minimal effects on PAR2-induced survival, whereas single knockdown had no effect. We conclude that PAR2 activation reduces cytokine-induced epithelial apoptosis via concurrent stimulation of MEK1/2 and PI3K but little involvement of MCL-1 and BAD. Our findings represent a novel mechanism whereby serine proteinases facilitate epithelial cell survival and may be important in the context of colonic healing.


Oncotarget | 2016

Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5

Franziska Zeeh; David Witte; Bernhard Rauch; Evelin Grage-Griebenow; Nadja Leinung; Sofie Joline Fromm; Stephanie Stölting; Koichiro Mihara; Roland Kaufmann; Utz Settmacher; Hendrik Lehnert; Morley D. Hollenberg; Hendrik Ungefroren

Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and metastasis, we hypothesized that there is signalling crosstalk between them. Depleting PDAC and non-PDAC cells of PAR2 by RNA interference strongly decreased TGF-β1-induced activation of Smad2/3 and p38 mitogen-activated protein kinase, Smad dependent transcriptional activity, expression of invasion associated genes, and cell migration/invasion in vitro. Likewise, the plasminogen activator-inhibitor 1 gene in primary cultures of aortic smooth muscle cells from PAR2−/− mice displayed a greatly attenuated sensitivity to TGF-β1 stimulation. PAR2 depletion in PDAC cells resulted in reduced protein and mRNA levels of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5). Forced expression of wild-type ALK5 or a kinase-active ALK5 mutant, but not a kinase-active but Smad-binding defective ALK5 mutant, was able to rescue TGF-β1-induced Smad3 activation, Smad dependent transcription, and cell migration in PAR2-depleted cells. Together, our data show that PAR2 is crucial for TGF-β1-induced cell motility by its ability to sustain expression of ALK5. Therapeutically targeting PAR2 may thus be a promising approach in preventing TGF-β-dependent driven metastatic dissemination in PDAC and possibly other stroma-rich tumour types.


Biological Chemistry | 2012

Proteinase-activated receptors (PARs): differential signalling by kallikrein-related peptidases KLK8 and KLK14.

Azza Eissa; Koichiro Mihara; Katerina Oikonomopoulou; Mahmoud Saifeddine; Bernard Renaux; Eleftherios P. Diamandis; Morley D. Hollenberg

Abstract We compared signalling pathways such as calcium transients, MAPK activation, β-arrestin interactions and receptor internalization triggered by kallikrein-related peptidases (KLKs) 8 and 14 in human and rat proteinase-activated receptor (PAR)2-expressing human embryonic kidney (HEK) and Kirsten transformed rat kidney (KNRK) cells. Further, we analysed processing by KLK8 vs. KLK14 of synthetic human and rat PAR2-derived sequences representing the cleavage-activation domain of PAR2. Our data show that like KLK14, KLK8 can unmask a PAR2 receptor-activating sequence from a peptide precursor. However, whilst KLK8, like KLK14, can signal in rat-PAR2-expressing KNRK cells, this enzyme cannot signal via human PAR2 in HEK or KNRK cells, but rather, disarms HEK PAR1. Thus, KLK8 and KLK14 can signal differentially via the PARs to affect tissue function.

Collaboration


Dive into the Koichiro Mihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahmoud Saifeddine

Canadian Institutes of Health Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Bouvier

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge