Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koichiro Ohmura is active.

Publication


Featured researches published by Koichiro Ohmura.


Nature | 2014

Genetics of rheumatoid arthritis contributes to biology and drug discovery

Yukinori Okada; Di Wu; Gosia Trynka; Towfique Raj; Chikashi Terao; Katsunori Ikari; Yuta Kochi; Koichiro Ohmura; Akari Suzuki; Shinji Yoshida; Robert R. Graham; Arun Manoharan; Ward Ortmann; Tushar Bhangale; Joshua C. Denny; Robert J. Carroll; Anne E. Eyler; Jeffrey D. Greenberg; Joel M. Kremer; Dimitrios A. Pappas; Lei Jiang; Jian Yin; Lingying Ye; Ding Feng Su; Jian Yang; Gang Xie; E. Keystone; Harm-Jan Westra; Tonu Esko; Andres Metspalu

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ∼10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.


Journal of Experimental Medicine | 2002

Critical Roles for Interleukin 1 and Tumor Necrosis Factor α in Antibody-induced Arthritis

Hong Ji; Allison R. Pettit; Koichiro Ohmura; Adriana Ortiz-Lopez; Véronique Duchatelle; Claude Degott; Ellen M. Gravallese; Diane Mathis; Christophe Benoist

In spontaneous inflammatory arthritis of K/BxN T cell receptor transgenic mice, the effector phase of the disease is provoked by binding of immunoglobulins (Igs) to joint surfaces. Inflammatory cytokines are known to be involved in human inflammatory arthritis, in particular rheumatoid arthritis, although, overall, the pathogenetic mechanisms of the human affliction remain unclear. To explore the analogy between the K/BxN model and human patients, we assessed the role and relative importance of inflammatory cytokines in K/BxN joint inflammation by transferring arthritogenic serum into a panel of genetically deficient recipients. Interleukin (IL)-1 proved absolutely necessary. Tumor necrosis factor (TNF)–α was also required, although seemingly less critically than IL-1, because a proportion of TNF-α–deficient mice developed robust disease. There was no evidence for an important role for IL-6. Bone destruction and reconstruction were also examined. We found that all mice with strong inflammation exhibited the bone erosion and reconstruction phenomena typical of K/BxN arthritis, with no evidence of any particular requirement for TNFα for bone destruction. The variability in the requirement for TNF-α, reminiscent of that observed in treated rheumatoid arthritis patients, did not appear genetically programmed but related instead to subtle environmental changes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome

Kazuhiko Arima; Akira Kinoshita; Hiroyuki Mishima; Nobuo Kanazawa; Takeumi Kaneko; Tsunehiro Mizushima; Kunihiro Ichinose; Hideki Nakamura; Akira Tsujino; Atsushi Kawakami; Masahiro Matsunaka; Shimpei Kasagi; Seiji Kawano; Shunichi Kumagai; Koichiro Ohmura; Tsuneyo Mimori; Makito Hirano; Satoshi Ueno; Keiko Tanaka; Masami Tanaka; Itaru Toyoshima; Hirotoshi Sugino; Akio Yamakawa; Keiji Tanaka; Norio Niikawa; Fukumi Furukawa; Shigeo Murata; Katsumi Eguchi; Hiroaki Ida; Koh-ichiro Yoshiura

Nakajo-Nishimura syndrome (NNS) is a disorder that segregates in an autosomal recessive fashion. Symptoms include periodic fever, skin rash, partial lipomuscular atrophy, and joint contracture. Here, we report a mutation in the human proteasome subunit beta type 8 gene (PSMB8) that encodes the immunoproteasome subunit β5i in patients with NNS. This G201V mutation disrupts the β-sheet structure, protrudes from the loop that interfaces with the β4 subunit, and is in close proximity to the catalytic threonine residue. The β5i mutant is not efficiently incorporated during immunoproteasome biogenesis, resulting in reduced proteasome activity and accumulation of ubiquitinated and oxidized proteins within cells expressing immunoproteasomes. As a result, the level of interleukin (IL)-6 and IFN-γ inducible protein (IP)-10 in patient sera is markedly increased. Nuclear phosphorylated p38 and the secretion of IL-6 are increased in patient cells both in vitro and in vivo, which may account for the inflammatory response and periodic fever observed in these patients. These results show that a mutation within a proteasome subunit is the direct cause of a human disease and suggest that decreased proteasome activity can cause inflammation.


Immunity | 2000

T Cell Progenitors Emerge Earlier Than B Cell Progenitors in the Murine Fetal Liver

Hiroshi Kawamoto; Tomokatsu Ikawa; Koichiro Ohmura; Shinji Fujimoto; Yoshimoto Katsura

The developmental potential of individual cells in the Lin-c-kit+CD45+IL-7R+ (IL-7R+) population from murine fetal liver was investigated using a clonal assay capable of determining the potential of a progenitor to give rise to myeloid, T, and B cells. Unipotent progenitors generating T cells (p-T) or B cells (p-B) but not other types of progenitors were found in the IL-7R+ population. A large proportion of progenitors at day 12 of gestation are p-T, whereas the frequency of p-T dramatically decreases with gestational age. In marked contrast, p-B are very rare by day 12, but they rapidly increase thereafter. These findings strongly suggest that the commitment of multipotent progenitors to T and B cell lineages occurs independently.


Rheumatology | 2010

The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody

Ran Nakashima; Yoshitaka Imura; Shio Kobayashi; Naoichiro Yukawa; Hajime Yoshifuji; Takaki Nojima; Daisuke Kawabata; Koichiro Ohmura; Takashi Usui; Katsuya Okawa; Tsuneyo Mimori

OBJECTIVES Various autoantibodies are detected in the sera of PM/DM patients. Some of them are specific to PM/DM patients and closely associated with clinical manifestations of the diseases. Recently, the anti-CADM-140 antibody was reported to be found specifically in clinically amyopathic DM (C-ADM) patients and to be associated with acute interstitial lung disease (ILD). We assessed the clinical significance of the anti-CADM-140 antibody and then investigated the autoantigen recognized by the anti-CADM-140 antibody. METHODS Autoantibodies were screened in 192 patients with various CTDs and 21 healthy controls using immunoprecipitation with [(35)S]methionine-labelled HeLa cells. Immunoabsorbent column chromatography was used to purify an autoantigen that was subsequently subjected to peptide mass fingerprinting. RESULTS The anti-CADM-140 antibody was revealed to be specific to DM. Most of the anti-CADM-140-positive patients were C-ADM although some of them showed apparent myositis. The anti-CADM-140-positive patients frequently showed hyperferritinaemia and acute progressive ILD with poor prognosis. The anti-CADM-140 antibody was shown to recognize IFN induced with helicase C domain protein 1 (IFIH1), also known as the melanoma differentiation-associated gene 5 (MDA5), which is one of the RIG-I-like receptors and plays a role in innate immune responses. CONCLUSION The anti-CADM-140 antibody was a marker of DM and intractable ILD and recognized IFIH1/MDA5, which is involved in innate immunity. These findings may give a new insight into the pathogenesis of DM.


Arthritis & Rheumatism | 2009

Gamma/delta T cells are the predominant source of interleukin‐17 in affected joints in collagen‐induced arthritis, but not in rheumatoid arthritis

Yoshinaga Ito; Takashi Usui; Shio Kobayashi; Mikiko Iguchi-Hashimoto; Hiromu Ito; Hiroyuki Yoshitomi; Takashi Nakamura; Masakazu Shimizu; Daisuke Kawabata; Naoichiro Yukawa; Motomu Hashimoto; Noriko Sakaguchi; Shimon Sakaguchi; Hajime Yoshifuji; Takaki Nojima; Koichiro Ohmura; Tsuneyo Mimori

OBJECTIVE Although interleukin-17 (IL-17)-producing gamma/delta T cells were reported to play pathogenic roles in collagen-induced arthritis (CIA), their characteristics remain unknown. The aim of this study was to clarify whether gamma/delta T cells or CD4+ T cells are the predominant IL-17-producing cells, and to determine what stimulates gamma/delta T cells to secret IL-17 in mice with CIA. The involvement of IL-17-producing gamma/delta T cells in SKG mice with autoimmune arthritis and patients with rheumatoid arthritis (RA) was also investigated. METHODS IL-17-producing cells in the affected joints of mice with CIA were counted by intracellular cytokine staining during 6 distinct disease phases, and these cells were stimulated with various combinations of cytokines or specific antigens to determine the signaling requirements. Similar studies were performed using SKG mice with arthritis and patients with RA. RESULTS Gamma/delta T cells were the predominant population in IL-17-producing cells in the swollen joints of mice with CIA, and the absolute numbers of these cells increased in parallel with disease activity. IL-17-producing gamma/delta T cells expressed CC chemokine receptor 6, were maintained by IL-23 but not by type II collagen in vitro, and were induced antigen independently in vivo. Furthermore, IL-17 production by gamma/delta T cells was induced by IL-1beta plus IL-23 independently of T cell receptor. In contrast to what was observed in mice with CIA, IL-17-producing gamma/delta T cells were nearly absent in the affected joints of SKG mice and patients with RA, and Th1 cells were predominant in the joints of patients with RA. CONCLUSION Gamma/delta T cells were antigen independently stimulated by inflammation at affected joints and produced enhanced amounts of IL-17 to exacerbate arthritis in mice with CIA but not in SKG mice with arthritis or patients with RA.


PLOS Genetics | 2013

Genome-wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis.

Jing Cui; Eli A. Stahl; Saedis Saevarsdottir; Corinne Miceli; Dorothée Diogo; Gosia Trynka; Towfique Raj; Maša Umiċeviċ Mirkov; Helena Canhão; Katsunori Ikari; Chikashi Terao; Yukinori Okada; Sara Wedrén; Johan Askling; Hisashi Yamanaka; Shigeki Momohara; Atsuo Taniguchi; Koichiro Ohmura; Fumihiko Matsuda; Tsuneyo Mimori; Namrata Gupta; Manik Kuchroo; Ann W. Morgan; John D. Isaacs; Anthony G. Wilson; Kimme L. Hyrich; M M J Herenius; Marieke E. Doorenspleet; P.P. Tak; J. Bart A. Crusius

Anti-tumor necrosis factor alpha (anti-TNF) biologic therapy is a widely used treatment for rheumatoid arthritis (RA). It is unknown why some RA patients fail to respond adequately to anti-TNF therapy, which limits the development of clinical biomarkers to predict response or new drugs to target refractory cases. To understand the biological basis of response to anti-TNF therapy, we conducted a genome-wide association study (GWAS) meta-analysis of more than 2 million common variants in 2,706 RA patients from 13 different collections. Patients were treated with one of three anti-TNF medications: etanercept (n = 733), infliximab (n = 894), or adalimumab (n = 1,071). We identified a SNP (rs6427528) at the 1q23 locus that was associated with change in disease activity score (ΔDAS) in the etanercept subset of patients (P = 8×10−8), but not in the infliximab or adalimumab subsets (P>0.05). The SNP is predicted to disrupt transcription factor binding site motifs in the 3′ UTR of an immune-related gene, CD84, and the allele associated with better response to etanercept was associated with higher CD84 gene expression in peripheral blood mononuclear cells (P = 1×10−11 in 228 non-RA patients and P = 0.004 in 132 RA patients). Consistent with the genetic findings, higher CD84 gene expression correlated with lower cross-sectional DAS (P = 0.02, n = 210) and showed a non-significant trend for better ΔDAS in a subset of RA patients with gene expression data (n = 31, etanercept-treated). A small, multi-ethnic replication showed a non-significant trend towards an association among etanercept-treated RA patients of Portuguese ancestry (n = 139, P = 0.4), but no association among patients of Japanese ancestry (n = 151, P = 0.8). Our study demonstrates that an allele associated with response to etanercept therapy is also associated with CD84 gene expression, and further that CD84 expression correlates with disease activity. These findings support a model in which CD84 genotypes and/or expression may serve as a useful biomarker for response to etanercept treatment in RA patients of European ancestry.


PLOS Genetics | 2012

A Genome-Wide Association Study Identified AFF1 as a Susceptibility Locus for Systemic Lupus Eyrthematosus in Japanese

Yukinori Okada; Kenichi Shimane; Yuta Kochi; Tomoko Tahira; Akari Suzuki; Koichiro Higasa; Atsushi Takahashi; Tetsuya Horita; Tatsuya Atsumi; Tomonori Ishii; Akiko Okamoto; Keishi Fujio; Michito Hirakata; Hirofumi Amano; Yuya Kondo; Satoshi Ito; Kazuki Takada; Akio Mimori; Kazuyoshi Saito; Makoto Kamachi; Yasushi Kawaguchi; Katsunori Ikari; Osman Wael Mohammed; Koichi Matsuda; Chikashi Terao; Koichiro Ohmura; Keiko Myouzen; Naoya Hosono; Tatsuhiko Tsunoda; Tsuneyo Mimori

Systemic lupus erythematosus (SLE) is an autoimmune disease that causes multiple organ damage. Although recent genome-wide association studies (GWAS) have contributed to discovery of SLE susceptibility genes, few studies has been performed in Asian populations. Here, we report a GWAS for SLE examining 891 SLE cases and 3,384 controls and multi-stage replication studies examining 1,387 SLE cases and 28,564 controls in Japanese subjects. Considering that expression quantitative trait loci (eQTLs) have been implicated in genetic risks for autoimmune diseases, we integrated an eQTL study into the results of the GWAS. We observed enrichments of cis-eQTL positive loci among the known SLE susceptibility loci (30.8%) compared to the genome-wide SNPs (6.9%). In addition, we identified a novel association of a variant in the AF4/FMR2 family, member 1 (AFF1) gene at 4q21 with SLE susceptibility (rs340630; P = 8.3×10−9, odds ratio = 1.21). The risk A allele of rs340630 demonstrated a cis-eQTL effect on the AFF1 transcript with enhanced expression levels (P<0.05). As AFF1 transcripts were prominently expressed in CD4+ and CD19+ peripheral blood lymphocytes, up-regulation of AFF1 may cause the abnormality in these lymphocytes, leading to disease onset.


Journal of Immunology | 2003

T/NK bipotent progenitors in the thymus retain the potential to generate dendritic cells.

Hui Qing Shen; Min Lu; Tomokatsu Ikawa; Kyoko Masuda; Koichiro Ohmura; Nagahiro Minato; Yoshimoto Katsura; Hiroshi Kawamoto

We have previously shown that the earliest thymic progenitors retain the potential to generate T and NK cells and that they lose the bipotentiality to give rise to unipotent T and NK progenitors during the progression of intrathymic developmental stages. The present study examines the ability of these thymic progenitors for generation of dendritic cells (DC) with a new clonal assay that is capable of determining the developmental potential for DC in addition to T cells and NK cells. We found that the large majority of the T/NK bipotential progenitors in the earliest population of fetal thymus was able to generate DC. Although the DC potential is lost with the progression of the differentiation stage, some of the T/NK bipotential progenitors still retain their DC potential even at the CD44+CD25+ stage.


American Journal of Human Genetics | 2013

Two Susceptibility Loci to Takayasu Arteritis Reveal a Synergistic Role of the IL12B and HLA-B Regions in a Japanese Population

Chikashi Terao; Hajime Yoshifuji; Akinori Kimura; Takayoshi Matsumura; Koichiro Ohmura; Meiko Takahashi; Masakazu Shimizu; Takahisa Kawaguchi; Zhiyong Chen; Taeko K. Naruse; Aiko Sato-Otsubo; Yusuke Ebana; Yasuhiro Maejima; Hideyuki Kinoshita; Kosaku Murakami; Daisuke Kawabata; Yoko Wada; Ichiei Narita; Junichi Tazaki; Yasushi Kawaguchi; Hisashi Yamanaka; Kimiko Yurugi; Yasuo Miura; Taira Maekawa; Seishi Ogawa; Issei Komuro; Ryozo Nagai; Ryo Yamada; Yasuharu Tabara; Mitsuaki Isobe

Takayasu arteritis (TAK) is an autoimmune systemic vasculitis of unknown etiology. Although previous studies have revealed that HLA-B*52:01 has an effect on TAK susceptibility, no other genetic determinants have been established so far. Here, we performed genome scanning of 167 TAK cases and 663 healthy controls via Illumina Infinium Human Exome BeadChip arrays, followed by a replication study consisting of 212 TAK cases and 1,322 controls. As a result, we found that the IL12B region on chromosome 5 (rs6871626, overall p = 1.7 × 10(-13), OR = 1.75, 95% CI 1.42-2.16) and the MLX region on chromosome 17 (rs665268, overall p = 5.2 × 10(-7), OR = 1.50, 95% CI 1.28-1.76) as well as the HLA-B region (rs9263739, a proxy of HLA-B*52:01, overall p = 2.8 × 10(-21), OR = 2.44, 95% CI 2.03-2.93) exhibited significant associations. A significant synergistic effect of rs6871626 and rs9263739 was found with a relative excess risk of 3.45, attributable proportion of 0.58, and synergy index of 3.24 (p ≤ 0.00028) in addition to a suggestive synergistic effect between rs665268 and rs926379 (p ≤ 0.027). We also found that rs6871626 showed a significant association with clinical manifestations of TAK, including increased risk and severity of aortic regurgitation, a representative severe complication of TAK. Detection of these susceptibility loci will provide new insights to the basic mechanisms of TAK pathogenesis. Our findings indicate that IL12B plays a fundamental role on the pathophysiology of TAK in combination with HLA-B(∗)52:01 and that common autoimmune mechanisms underlie the pathology of TAK and other autoimmune disorders such as psoriasis and inflammatory bowel diseases in which IL12B is involved as a genetic predisposing factor.

Collaboration


Dive into the Koichiro Ohmura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge