Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koichiro Suemori is active.

Publication


Featured researches published by Koichiro Suemori.


The Journal of Infectious Diseases | 2014

The First Identification and Retrospective Study of Severe Fever With Thrombocytopenia Syndrome in Japan

Toru Takahashi; Ken Maeda; Tadaki Suzuki; Aki Ishido; Toru Shigeoka; Takayuki Tominaga; Toshiaki Kamei; Masahiro Honda; Daisuke Ninomiya; Takenori Sakai; Takanori Senba; Shozo Kaneyuki; Shota Sakaguchi; Akira Satoh; Takanori Hosokawa; Yojiro Kawabe; Shintaro Kurihara; Koichi Izumikawa; Shigeru Kohno; Taichi Azuma; Koichiro Suemori; Masaki Yasukawa; Tetsuya Mizutani; Tsutomu Omatsu; Yukie Katayama; Masaharu Miyahara; Masahito Ijuin; Kazuko Doi; Masaru Okuda; Kazunori Umeki

Abstract Background. Severe fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus (SFTSV), a novel bunyavirus reported to be endemic in central and northeastern China. This article describes the first identified patient with SFTS and a retrospective study on SFTS in Japan. Methods. Virologic and pathologic examinations were performed on the patients samples. Laboratory diagnosis of SFTS was made by isolation/genome amplification and/or the detection of anti-SFTSV immunoglobulin G antibody in sera. Physicians were alerted to the initial diagnosis and asked whether they had previously treated patients with symptoms similar to those of SFTS. Results. A female patient who died in 2012 received a diagnosis of SFTS. Ten additional patients with SFTS were then retrospectively identified. All patients were aged ≥50 years and lived in western Japan. Six cases were fatal. The ratio of males to females was 8:3. SFTSV was isolated from 8 patients. Phylogenetic analyses indicated that all of the Japanese SFTSV isolates formed a genotype independent to those from China. Most patients showed symptoms due to hemorrhage, possibly because of disseminated intravascular coagulation and/or hemophagocytosis. Conclusions. SFTS has been endemic to Japan, and SFTSV has been circulating naturally within the country.


PLOS Pathogens | 2010

HLA Class I Binding of HBZ Determines Outcome in HTLV-1 Infection

Aidan MacNamara; Aileen G. Rowan; Silva Hilburn; Ulrich D. Kadolsky; Hiroshi Fujiwara; Koichiro Suemori; Masaki Yasukawa; Graham P. Taylor; Charles R. M. Bangham; Becca Asquith

CD8+ T cells can exert both protective and harmful effects on the virus-infected host. However, there is no systematic method to identify the attributes of a protective CD8+ T cell response. Here, we combine theory and experiment to identify and quantify the contribution of all HLA class I alleles to host protection against infection with a given pathogen. In 432 HTLV-1-infected individuals we show that individuals with HLA class I alleles that strongly bind the HTLV-1 protein HBZ had a lower proviral load and were more likely to be asymptomatic. We also show that in general, across all HTLV-1 proteins, CD8+ T cell effectiveness is strongly determined by protein specificity and produce a ranked list of the proteins targeted by the most effective CD8+ T cell response through to the least effective CD8+ T cell response. We conclude that CD8+ T cells play an important role in the control of HTLV-1 and that CD8+ cells specific to HBZ, not the immunodominant protein Tax, are the most effective. We suggest that HBZ plays a central role in HTLV-1 persistence. This approach is applicable to all pathogens, even where data are sparse, to identify simultaneously the HLA Class I alleles and the epitopes responsible for a protective CD8+ T cell response.


Blood | 2009

Aurora-A kinase: A novel target of cellular immunotherapy for leukemia

Toshiki Ochi; Hiroshi Fujiwara; Koichiro Suemori; Taichi Azuma; Yoshihiro Yakushijin; Takaaki Hato; Kiyotaka Kuzushima; Masaki Yasukawa

Aurora-A kinase (Aur-A) is a member of the serine/threonine kinase family that regulates the cell division process, and has recently been implicated in tumorigenesis. In this study, we identified an antigenic 9-amino-acid epitope (Aur-A(207-215): YLILEYAPL) derived from Aur-A capable of generating leukemia-reactive cytotoxic T lymphocytes (CTLs) in the context of HLA-A*0201. The synthetic peptide of this epitope appeared to be capable of binding to HLA-A*2402 as well as HLA-A*0201 molecules. Leukemia cell lines and freshly isolated leukemia cells, particularly chronic myelogenous leukemia (CML) cells, appeared to express Aur-A abundantly. Aur-A-specific CTLs were able to lyse human leukemia cell lines and freshly isolated leukemia cells, but not normal cells, in an HLA-A*0201-restricted manner. Importantly, Aur-A-specific CTLs were able to lyse CD34+ CML progenitor cells but did not show any cytotoxicity against normal CD34+ hematopoietic stem cells. The tetramer assay revealed that the Aur-A(207-215) epitope-specific CTL precursors are present in peripheral blood of HLA-A*0201-positive and HLA-A*2402-positive patients with leukemia, but not in healthy individuals. Our results indicate that cellular immunotherapy targeting Aur-A is a promising strategy for treatment of leukemia.


Journal of General Virology | 2009

HBZ is an immunogenic protein, but not a target antigen for human T-cell leukemia virus type 1-specific cytotoxic T lymphocytes.

Koichiro Suemori; Hiroshi Fujiwara; Toshiki Ochi; Taiji Ogawa; Masao Matsuoka; Tadashi Matsumoto; Jean-Michel Mesnard; Masaki Yasukawa

Recently, HBZ has been reported to play an important role in the proliferation of adult T-cell leukaemia (ATL) cells and might be a target of novel therapy for ATL. To develop a novel immunotherapy for ATL, we verified the feasibility of cellular immunotherapy targeting HBZ. We established an HBZ-specific and HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) clone. Detailed study using this CTL clone clearly showed that HBZ is certainly an immunogenic protein recognizable by human CTLs; however, HBZ-specific CTLs could not lyse ATL cells. Failure of HBZ-specific CTLs to recognize human T-cell leukemia virus type 1 (HTLV-1)-infected cells might be due to a low level of HBZ protein expression in ATL cells and resistance of HTLV-1-infected cells to CTL-mediated cytotoxicity. Although HBZ plays an important role in the proliferation of HTLV-1-infected cells, it may also provide a novel mechanism that allows them to evade immune recognition.


PLOS ONE | 2010

Subtypes of familial hemophagocytic lymphohistiocytosis in Japan based on genetic and functional analyses of cytotoxic T lymphocytes.

Kozo Nagai; Ken Yamamoto; Hiroshi Fujiwara; Jun An; Toshiki Ochi; Koichiro Suemori; Takahiro Yasumi; Hisamichi Tauchi; Katsuyoshi Koh; Maho Sato; Akira Morimoto; Toshio Heike; Eiichi Ishii; Masaki Yasukawa

Background Familial hemophagocytic lymphohistiocytosis (FHL) is a rare disease of infancy or early childhood. To clarify the incidence and subtypes of FHL in Japan, we performed genetic and functional analyses of cytotoxic T lymphocytes (CTLs) in Japanese patients with FHL. Design and Methods Among the Japanese children with hemophagocytic lymphohistiocytosis (HLH) registered at our laboratory, those with more than one of the following findings were eligible for study entry under a diagnosis of FHL: positive for known genetic mutations, a family history of HLH, and impaired CTL-mediated cytotoxicity. Mutations of the newly identified causative gene for FHL5, STXBP2, and the cytotoxicity and degranulation activity of CTLs in FHL patients, were analyzed. Results Among 31 FHL patients who satisfied the above criteria, PRF1 mutation was detected in 17 (FHL2) and UNC13D mutation was in 10 (FHL3). In 2 other patients, 3 novel mutations of STXBP2 gene were confirmed (FHL5). Finally, the remaining 2 were classified as having FHL with unknown genetic mutations. In all FHL patients, CTL-mediated cytotoxicity was low or deficient, and degranulation activity was also low or absent except FHL2 patients. In 2 patients with unknown genetic mutations, the cytotoxicity and degranulation activity of CTLs appeared to be deficient in one patient and moderately impaired in the other. Conclusions FHL can be diagnosed and classified on the basis of CTL-mediated cytotoxicity, degranulation activity, and genetic analysis. Based on the data obtained from functional analysis of CTLs, other unknown gene(s) responsible for FHL remain to be identified.


Retrovirology | 2014

Cytotoxic T lymphocyte lysis of HTLV-1 infected cells is limited by weak HBZ protein expression, but non-specifically enhanced on induction of Tax expression

Aileen G. Rowan; Koichiro Suemori; Hiroshi Fujiwara; Masaki Yasukawa; Yuetsu Tanaka; Graham P. Taylor; Charles R. M. Bangham

BackgroundImmunogenetic evidence indicates that cytotoxic T lymphocytes (CTLs) specific for the weak CTL antigen HBZ limit HTLV-1 proviral load in vivo, whereas there is no clear relationship between the proviral load and the frequency of CTLs specific for the immunodominant antigen Tax. In vivo, circulating HTLV-1-infected cells express HBZ mRNA in contrast, Tax expression is typically low or undetectable. To elucidate the virus-suppressing potential of CTLs targeting HBZ, we compared the ability of HBZ- and Tax-specific CTLs to lyse naturally-infected cells, by co-incubating HBZ- and Tax-specific CTL clones with primary CD4+ T cells from HLA-matched HTLV-1-infected donors. We quantified lysis of infected cells, and tested whether specific virus-induced host cell surface molecules determine the susceptibility of infected cells to CTL-mediated lysis.ResultsPrimary infected cells upregulated HLA-A*02, ICAM-1, Fas and TRAIL-R1/2 in concert with Tax expression, forming efficient targets for both HTLV-1-specific CTLs and CTLs specific for an unrelated virus. We detected expression of HBZ mRNA (spliced isoform) in both Tax-expressing and non-expressing infected cells, and the HBZ26–34 epitope was processed and presented by cells transfected with an HBZ expression plasmid. However, when coincubated with primary cells, a high-avidity HBZ-specific CTL clone killed significantly fewer infected cells than were killed by a Tax-specific CTL clone. Finally, incubation with Tax- or HBZ-specific CTLs resulted in a significant decrease in the frequency of cells expressing high levels of HLA-A*02.ConclusionsHTLV-1 gene expression in primary CD4+ T cells non-specifically increases susceptibility to CTL lysis. Despite the presence of HBZ spliced-isoform mRNA, HBZ epitope presentation by primary cells is significantly less efficient than that of Tax.


Journal of Immunology | 2013

Protein Kinase C Inhibitor Generates Stable Human Tolerogenic Dendritic Cells

Takuya Matsumoto; Hitoshi Hasegawa; Sachiko Onishi; Jun Ishizaki; Koichiro Suemori; Masaki Yasukawa

Tolerogenic dendritic cells (DCs) are a promising tool for a specific form of cellular therapy whereby immunological tolerance can be induced in the context of transplantation and autoimmunity. From libraries of bioactive lipids, nuclear receptor ligands, and kinase inhibitors, we screened conventional protein kinase C inhibitors (PKCIs) bisindolylmaleimide I, Gö6983, and Ro32-0432 with strong tolerogenic potential. PKCI-treated human DCs were generated by subjecting them to a maturation process after differentiation of immature DCs. The PKCI-treated DCs had a semimature phenotype, showing high production of IL-10, and efficiently induced IL-10–producing T cells and functional Foxp3+ regulatory T cells from naive CD4+ T cells, thus eliciting a strong immunosuppressive function. They also showed CCR7 expression and sufficient capacity for migration toward CCR7 ligands. Additionally, PKCI-treated DCs were highly stable when exposed to inflammatory stimuli such as proinflammatory cytokines or LPS. Conventional PKCIs inhibited NF-κB activation of both the canonical and noncanonical pathways of DC maturation, thus suppressing the expression of costimulatory molecules and IL-12 production. High production of IL-10 in PKCI-treated DCs was due to not only an increase of intracellular cAMP, but also a synergistic effect of increased cAMP and NF-κB inhibition. Moreover, PKCI-treated mouse DCs that had properties similar to PKCI-treated human DCs prevented graft-versus-host disease in a murine model of acute graft-versus-host disease. Conventional PKCI-treated DCs may be useful for tolerance-inducing therapy, as they satisfy the required functional characteristics for clinical-grade tolerogenic DCs.


Virology Journal | 2010

Human herpesvirus 6 infection impairs Toll-like receptor signaling

Yuichi Murakami; Kazushi Tanimoto; Hiroshi Fujiwara; Jun An; Koichiro Suemori; Toshiki Ochi; Hitoshi Hasegawa; Masaki Yasukawa

Human herpesvirus 6 (HHV-6) has a tropism for immunocompetent cells, including T lymphocytes, monocytes/macrophages, and dendritic cells (DCs) suggesting that HHV-6 infection affects the immunosurveillance system. Toll-like receptor (TLR) system plays an important role in innate immunity against various pathogens. In the present study, we investigated the effect of HHV-6 infection on the expression and intracellular signaling of TLRs in DCs. Although expression levels of TLRs were not decreased or slightly elevated following HHV-6 infection, the amounts of cytokines produced following stimulation with ligands for TLRs appeared to be dramatically decreased in HHV-6-infected DCs as compared to mock-infected DCs. Similarly, phosphorylation levels of TAK-1, IκB kinase, and IκB-α following stimulation of HHV-6-infected DCs with lipopolysaccharide, which is the ligand for TLR4, appeared to be decreased. These data show that HHV-6 impairs intracellular signaling through TLRs indicating the novel mechanism of HHV-6-mediated immunomodulation.


Biochemical and Biophysical Research Communications | 2011

Lysophosphatidylcholine enhances the suppressive function of human naturally occurring regulatory T cells through TGF-β production

Hitoshi Hasegawa; Jin Lei; Takuya Matsumoto; Sachiko Onishi; Koichiro Suemori; Masaki Yasukawa

Naturally occurring CD4(+)CD25(+) regulatory T cells (nTregs) play a pivotal role in the maintenance of self-tolerance and immune homeostasis. To gain insight into the mechanism of action of nTregs in pathological and physiological immune responses, it is important to analyze bioactive molecules that modulate the maintenance and function of nTregs. From a library of bioactive lipids, we obtained lysophosphatidylcholine (LPC) as a molecule that enhanced the Foxp3 expression and suppressive function of human nTregs significantly in comparison with those of DMSO-treated nTregs (control). The expression levels of TGF-β1 mRNA and protein in LPC-treated nTregs were significantly higher than those in control nTregs. After treatment with anti-TGF-β1 antibody, the increases in Foxp3 expression and the suppressive properties of LPC-treated nTregs returned to the levels observed in control nTregs. These findings indicate that LPC enhances Foxp3 expression and the suppressive function of nTregs through TGF-β1 produced by nTregs themselves. Experimental knockdown of G2A and GPR4 showed that this LPC-induced TGF-β1 expression in nTregs was due to G2A signaling, and did not involve GPR4. Moreover, JNK was a major contributor to LPC-induced TGF-β1 expression in nTregs, although LPC activated MAPKs including ERK1/2, p38 MAPK, and JNK via G2A. LPC is a bioactive lysolipid highly abundant in the circulation. Therefore, LPC may contribute to the maintenance and function of human nTregs in vivo.


Cancer Science | 2008

Identification of an epitope derived from CML66, a novel tumor‐associated antigen expressed broadly in human leukemia, recognized by human leukocyte antigen‐A*2402‐restricted cytotoxic T lymphocytes

Koichiro Suemori; Hiroshi Fujiwara; Toshiki Ochi; Taichi Azuma; Jun Yamanouchi; Hiroshi Narumi; Yoshihiro Yakushijin; Takaaki Hato; Hitoshi Hasegawa; Masaki Yasukawa

CML66 is a newly identified differentiation antigen that is expressed broadly in human leukemia and solid tumors, but its physiological function remains unknown. In the present study, to clarify the feasibility of CML66‐targeted cancer immunotherapy, we attempted to identify cytotoxic T lymphocyte (CTL) epitopes derived from CML66. An immunogenic CML66‐derived epitope (amino acid residues 76–84; YYIDTLGRI) capable of inducing human leukocyte antigen (HLA)‐A*2402‐restricted CTL specific for this peptide was identified. CML66‐derived peptide‐specific CTL efficiently lysed human leukemia cells, but not normal cells, in a HLA‐A*2402‐restricted fashion. Quantitative real‐time polymerase chain reaction revealed that CML66 mRNA is expressed abundantly in primary acute myeloid leukemia cells, acute lymphoid leukemia cells, and chronic myelogenous leukemia cells in advanced phase, and that the expression level of CML66 mRNA in normal cells is low compared with that in leukemia cells. CML66‐specific CTL precursors were detected in the peripheral blood of patients with acute leukemia. These data indicate that the CML66‐derived epitope identified in the present study is a new target antigen for cellular immunotherapy of human leukemia. (Cancer Sci 2008; 99: 1414–1419)

Collaboration


Dive into the Koichiro Suemori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge