Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koji Arai is active.

Publication


Featured researches published by Koji Arai.


Few-body Systems | 1998

Global-vector representation of the angular motion of few-particle systems II

Y. Suzuki; W. Horiuchi; M. Orabi; Koji Arai

The angular motion of a few-body system is described with global vectors which depend on the positions of the particles. The previous study using a single global vector is extended to make it possible to describe both natural and unnatural parity states. Numerical examples include three- and four-nucleon systems interacting via nucleon-nucleon potentials of AV8 type and a 3α system with a nonlocal αα potential. The results using the explicitly correlated Gaussian basis with the global vectors are shown to be in good agreement with those of other methods. A unique role of the unnatural parity component, caused by the tensor force, is clarified in the 0−1 state of 4He. The two-particle correlation function is calculated in the coordinate and momentum spaces to show different characteristics of the interactions employed.


Classical and Quantum Gravity | 2008

Operational status of TAMA300 with the seismic attenuation system (SAS)

Ryutaro Takahashi; Koji Arai; Daisuke Tatsumi; Mitsuhiro Fukushima; Toshitaka Yamazaki; M. K. Fujimoto; K. Agatsuma; Y. Arase; Noriyasu Nakagawa; A. Takamori; Kimio Tsubono; R. DeSalvo; A. Bertolini; S. Márka; V. Sannibale

TAMA300 has been upgraded to improve the sensitivity at low frequencies after the last observation run in 2004. To avoid the noise caused by seismic activities, we installed a new seismic isolation system —- the TAMA seismic attenuation system (SAS). Four SAS towers for the test-mass mirrors were sequentially installed from 2005 to 2006. The recycled Fabry–Perot Michelson interferometer was successfully locked with the SAS. We confirmed the reduction of both length and angular fluctuations at frequencies higher than 1 Hz owing to the SAS.


Classical and Quantum Gravity | 2003

Present status of large-scale cryogenic gravitational wave telescope

Kazuaki Kuroda; Masatake Ohashi; Shinji Miyoki; Takashi Uchiyama; Hideki Ishitsuka; Kazuhiro Yamamoto; K. Kasahara; M. K. Fujimoto; Seiji Kawamura; Ryutaro Takahashi; Toshitaka Yamazaki; Koji Arai; Daisuke Tatsumi; Akitoshi Ueda; Mitsuhiro Fukushima; Shuichi Sato; Shigeo Nagano; Y. Tsunesada; Zong Hong Zhu; T. Shintomi; Akira Yamamoto; T. Suzuki; Yoshio Saito; T. Haruyama; Nobuaki Sato; Yasuo Higashi; Takayuki Tomaru; Kimio Tsubono; Masaki Ando; A. Takamori

The large-scale cryogenic gravitational wave telescope (LCGT) is the future project of the Japanese gravitational wave group. Two sets of 3 km arm length laser interferometric gravitational wave detectors will be built in a tunnel of Kamioka mine in Japan. LCGT will detect chirp waves from binary neutron star coalescence at 240 Mpc away with a S/N of 10. The expected number of detectable events in a year is two or three. To achieve the required sensitivity, several advanced techniques will be employed such as a low-frequency vibration-isolation system, a suspension point interferometer, cryogenic mirrors, a resonant side band extraction method, a high-power laser system and so on. We hope that the beginning of the project will be in 2005 and the observations will start in 2009.


Physical Review Letters | 2012

Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector.

Takashi Uchiyama; Shinji Miyoki; Souichi Telada; Kazuhiro Yamamoto; Masatake Ohashi; K. Agatsuma; Koji Arai; Masa-Katsu Fujimoto; T. Haruyama; Seiji Kawamura; O. Miyakawa; Naoko Ohishi; Takanori Saito; T. Shintomi; Toshikazu Suzuki; Ryutaro Takahashi; Daisuke Tatsumi

The thermal fluctuation of mirror surfaces is the fundamental limitation for interferometric gravitational wave (GW) detectors. Here, we experimentally demonstrate for the first time a reduction in a mirrors thermal fluctuation in a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer Observatory at 17 and 18 K. The detector sensitivity, which was limited by the mirrors thermal fluctuation at room temperature, was improved in the frequency range of 90 to 240 Hz by cooling the mirrors. The improved sensitivity reached a maximum of 2.2×10(-19) m/√Hz at 165 Hz.


Physical Review Letters | 2008

Search for a stochastic background of 100-MHz gravitational waves with laser interferometers

Tomotada Akutsu; Seiji Kawamura; A. Nishizawa; Koji Arai; Kazuhiro Yamamoto; Daisuke Tatsumi; Shigeo Nagano; Erina Nishida; Takeshi Chiba; Ryuichi Takahashi; Naoshi Sugiyama; Mitsuhiro Fukushima; Toshitaka Yamazaki; Masa Katsu Fujimoto

This Letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of approximately 10;{-16} Hz;{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h{100};{2}Omega_{gw}<6 x 10;{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.


Physical Review D | 2008

Laser-interferometric Detectors for Gravitational Wave Backgrounds at 100 MHz : Detector Design and Sensitivity

A. Nishizawa; Seiji Kawamura; Tomotada Akutsu; Koji Arai; Kazuhiro Yamamoto; Daisuke Tatsumi; Erina Nishida; Masa-aki Sakagami; Takeshi Chiba; Ryuichi Takahashi; Naoshi Sugiyama

Recently, observational searches for gravitational wave background (GWB) have been developed and given direct and indirect constraints on the energy density of GWB in a broad range of frequencies. These constraints have already rejected some theoretical models of large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though the indirect limit by


Classical and Quantum Gravity | 2009

Status of Japanese gravitational wave detectors

Koji Arai; Ryutaro Takahashi; Daisuke Tatsumi; K. Izumi; Yaka Wakabayashi; H. Ishizaki; Mitsuhiro Fukushima; Toshitaka Yamazaki; M. K. Fujimoto; A. Takamori; Kimio Tsubono; R. DeSalvo; A. Bertolini; S. Márka; V. Sannibale; Takashi Uchiyama; O. Miyakawa; Shinji Miyoki; K. Agatsuma; Takanori Saito; Masatake Ohashi; Kenta Kuroda; I. Nakatani; Souichi Telada; Kazuhiro Yamamoto; Takayuki Tomaru; T. Suzuki; T. Haruyama; Nobuaki Sato; Akira Yamamoto

^{2}\mathrm{He}


Classical and Quantum Gravity | 2002

Japanese large-scale interferometers

Kazuaki Kuroda; Masatake Ohashi; Shinji Miyoki; Hideki Ishizuka; C.T Taylor; Kazuhiro Yamamoto; O. Miyakawa; M. K. Fujimoto; Seiji Kawamura; Ryutaro Takahashi; Toshitaka Yamazaki; Koji Arai; Daisuke Tatsumi; Akitoshi Ueda; Mitsuhiro Fukushima; Shuichi Sato; Takakazu Shintomi; Akira Yamamoto; Toshikazu Suzuki; Yoshio Saito; T. Haruyama; Nobuaki Sato; Yasuo Higashi; Takashi Uchiyama; Takayuki Tomaru; Kimio Tsubono; Masaki Ando; A. Takamori; Kenji Numata; Ken-ichi Ueda

abundance due to big-bang nucleosynthesis exists. In this paper, we propose an experiment with laser interferometers searching GWB at 100 MHz. We considered three detector designs and evaluated the GW response functions of a single detector. As a result, we found that, at 100 MHz, the most sensitive detector is the design, a so-called synchronous recycling interferometer, which has better sensitivity than an ordinary Fabry-Perot Michelson interferometer by a factor of 3.3 at 100 MHz. When we select the arm length of 0.75 m and realistic optical parameters, the best sensitivity achievable is


Physical Review C | 2012

Ab initiostudy of the photoabsorption of4He

Wataru Horiuchi; Y. Suzuki; Koji Arai

h\ensuremath{\approx}7.8\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}21}\text{ }\text{ }{\mathrm{Hz}}^{\ensuremath{-}1/2}


Physical Review D | 2015

All-sky search for long-duration gravitational wave transients with LIGO

B. Abbott; R. Abbott; T. D. Abbott; M. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. Adhikari; V. B. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; B. Allen; A. Allocca; D. Amariutei; S. Anderson; W. G. Anderson; Koji Arai; M. C. Araya; C. C. Arceneaux; J. S. Areeda; N. Arnaud; K. G. Arun; G. Ashton

at 100 MHz with bandwidth

Collaboration


Dive into the Koji Arai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Jean Baye

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Pierre Descouvemont

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge