Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koji Iwase is active.

Publication


Featured researches published by Koji Iwase.


Mycoscience | 2005

Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae)

Masahide Yamato; Koji Iwase; Takahiro Yagame; Akira Suzuki

The identity of mycorrhizal fungi associated with the achlorophyllous orchid Epipogium roseum was investigated by DNA analysis. The fungi were isolated from each coiled hypha (peloton), and the ITS region of nuclear rDNA was sequenced. Phylogenetic analysis based on the neighbor-joining method showed that all the isolates clustered with fungi belonging to Psathyrella or Coprinus in Coprinaceae. Those fungi are known as saprobes, using dead organic materials for a nutritive source. Large colonies of this orchid were frequently found around tree stumps or fallen logs. In such colonies, these decaying wood materials would be used as a large and persistent carbon source for the growth of this orchid. This is the first report of Coprinaceae as an orchid mycorrhizal fungi.


Annals of Botany | 2009

Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules.

Mélanie Roy; Takahiro Yagame; Masahide Yamato; Koji Iwase; Christine Heinz; Antonella Faccio; Paola Bonfante; Marc-André Selosse

BACKGROUND AND AIMS Epipogium aphyllum is a Eurasian achlorophyllous, mycoheterotrophic forest orchid. Due to its rarity, it is often protected, and its biology is poorly known. The identity and pattern of colonization of fungal associates providing carbon to this orchid have not been studied previously. METHODS Using samples from 34 individuals from 18 populations in Japan, Russia and France, the following were investigated: (a) colonization patterns of fungal associates of E. aphyllum by microscopy; (b) their identity by PCR amplification of nuclear ribosomal ITS carried out on rhizome fragments and hyphal pelotons. RESULTS AND CONCLUSIONS Microscopic investigations revealed that thick rhizomes were densely colonized by fungi bearing clamp-connections and dolipores, i.e. basidiomycetes. Molecular analysis identified Inocybe species as exclusive symbionts of 75 % of the plants investigated and, more rarely, other basidiomycetes (Hebeloma, Xerocomus, Lactarius, Thelephora species). Additionally, ascomycetes, probably endophytes or parasites, were sometimes present. Although E. aphyllum associates with diverse species from Inocybe subgenera Mallocybe and Inocybe sensu stricto, no evidence for cryptic speciation in E. aphyllum was found. Since basidiomycetes colonizing the orchid are ectomycorrhizal, surrounding trees are probably the ultimate carbon source. Accordingly, in one population, ectomycorrhizae sampled around an individual orchid revealed the same fungus on 11.2 % of tree roots investigated. Conversely, long, thin stolons bearing bulbils indicated active asexual multiplication, but these propagules were not colonized by fungi. These findings are discussed in the framework of ecology and evolution of mycoheterotrophy.


New Phytologist | 2012

Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza‐forming Ceratobasidiaceae fungi

Takahiro Yagame; Takamichi Orihara; Marc-André Selosse; Masahide Yamato; Koji Iwase

• We investigated the fungal symbionts and carbon nutrition of a Japanese forest photosynthetic orchid, Platanthera minor, whose ecology suggests a mixotrophic syndrome, that is, a mycorrhizal association with ectomycorrhiza (ECM)-forming fungi and partial exploitation of fungal carbon. • We performed molecular identification of symbionts by PCR amplifications of the fungal ribosomal DNA on hyphal coils extracted from P. minor roots. We tested for a (13)C and (15)N enrichment characteristic of mixotrophic plants. We also tested the ectomycorrhizal abilities of orchid symbionts using a new protocol of direct inoculation of hyphal coils onto roots of Pinus densiflora seedlings. • In phylogenetic analyses, most isolated fungi were close to ECM-forming Ceratobasidiaceae clades previously detected from a few fully heterotrophic orchids or environmental ectomycorrhiza surveys. The direct inoculation of fungal coils of these fungi resulted in ectomycorrhiza formation on P. densiflora seedlings. Stable isotope analyses indicated mixotrophic nutrition of P. minor, with fungal carbon contributing from 50% to 65%. • This is the first evidence of photosynthetic orchids associated with ectomycorrhizal Ceratobasidiaceae taxa, confirming the evolution of mixotrophy in the Orchideae orchid tribe, and of ectomycorrhizal abilities in the Ceratobasidiaceae. Our new ectomycorrhiza formation technique may enhance the study of unculturable orchid mycorrhizal fungi.


Mycorrhiza | 2008

Ceratobasidiaceae mycorrhizal fungi isolated from nonphotosynthetic orchid Chamaegastrodia sikokiana

Takahiro Yagame; Masahide Yamato; Akira Suzuki; Koji Iwase

Mycorrhizal fungi were isolated from the nonphotosynthetic orchid Chamaegastrodia sikokiana and identified as members of Ceratobasidiaceae by phylogenetic analysis of the internal transcribed spacer (ITS) region of ribosomal deoxyribonucleic acid. The ITS sequences were similar among geographically separated samples obtained from Mt. Kiyosumi in Chiba Prefecture and Mt. Yokokura in Kochi Prefecture. One of the isolated fungi, KI1-2, formed ectomycorrhiza on seedlings of Abies firma in pot culture, suggesting that tripartite symbiosis exists among C. sikokiana, mycorrhizal fungi, and A. firma in nature, and carbon compounds are supplied from A. firma to C. sikokiana through the hyphae of the mycorrhizal fungi. To our knowledge, this is the second study to suggest the involvement of Ceratobasidiaceae fungi in tripartite symbiosis with achlorophyllous orchids and photosynthetic host plants.


Journal of Plant Research | 2007

Developmental processes of achlorophyllous orchid, Epipogium roseum: from seed germination to flowering under symbiotic cultivation with mycorrhizal fungus.

Takahiro Yagame; Masahide Yamato; Masahiro Mii; Akira Suzuki; Koji Iwase

We have achieved the symbiotic cultivation of an apparently achlorophyllous orchid, Epipogium roseum Lindl., with a mycorrhizal fungus isolated from an underground organ of this orchid. Although the seed germination rate was extremely low, subsequent growth from protocorm to flowering was induced in a medium containing volcanic soils and sawdust. Stolons elongated from each protocorm, and rhizomes were formed at certain intervals on the stolons. Some of the rhizomes developed into a coralloid form, and tubers were formed from the coralloid rhizomes. The coralloid rhizomes degenerated concurrently with maturation of the tubers. Six months after seed sowing, around 80 tubers were produced from a single protocorm. An inflorescence appeared from each of the large tubers, and the process to flowering was observed in one of these. Consequently, the developmental processes from seed to flowering in E. roseum was clearly revealed in this study.


Mycorrhiza | 2011

Specific arbuscular mycorrhizal fungi associated with non-photosynthetic Petrosavia sakuraii (Petrosaviaceae).

Masahide Yamato; Takahiro Yagame; Norihiro Shimomura; Koji Iwase; Hiroshi Takahashi; Yuki Ogura-Tsujita; Tomohisa Yukawa

Mycorrhizal fungi in roots of the achlorophyllous Petrosavia sakuraii (Petrosaviaceae) were identified by molecular methods. Habitats examined were plantations of the Japanese cypress Chamaecyparis obtusa in Honshu, an evergreen broad-leaved forest in Amami Island in Japan and a mixed deciduous and evergreen forest in China. Aseptate hyphal coils were observed in root cortical cells of P. sakuraii, suggesting Paris-type arbuscular mycorrhiza (AM). Furthermore, hyphal coils that had degenerated to amorphous clumps were found in various layers of the root cortex. Despite extensive sampling of P. sakuraii from various sites in Japan and China, most of the obtained AM fungal sequences of the nuclear small subunit ribosomal RNA gene were nearly identical and phylogenetic analysis revealed that they formed a single clade in the Glomus group A lineage. This suggests that the symbiotic relationship is highly specific. AM fungi of P. sakuraii were phylogenetically different from those previously detected in the roots of some mycoheterotrophic plants. In a habitat in C. obtusa plantation, approximately half of the AM fungi detected in roots of C. obtusa surrounding P. sakuraii belonged to the same clade as that of P. sakuraii. This indicates that particular AM fungi are selected by P. sakuraii from diverse indigenous AM fungi. The same AM fungi can colonize both plant species, and photosynthates of C. obtusa may be supplied to P. sakuraii through a shared AM fungal mycelial network. Although C. obtusa plantations are widely distributed throughout Japan, P. petrosavia is a rare plant species, probably because of its high specificity towards particular AM fungi.


Mycologia | 2010

Taxonomic reconsideration of a sequestrate fungus, Octaviania columellifera, with the proposal of a new genus, Heliogaster, and its phylogenetic relationships in the Boletales

Takamichi Orihara; Fumiko Sawada; Shiho Ikeda; Masahide Yamato; Chihiro Tanaka; Norihiro Shimomura; Makoto Hashiya; Koji Iwase

During taxonomic revision of genus Octaviania in Japan we examined herbarium and fresh specimens of O. columellifera and O. asterosperma sensu S. Yoshimi & Y. Doi with morphological and molecular techniques. These two species were identical in both macro- and micromorphological characters and were clearly different from the generally known O. asterosperma. The identity of the two species and their distinctness from O. asterosperma was further supported by both nuclear large subunit and ITS rDNA phylogeny. The molecular analyses also revealed that O. columellifera shares its lineage with the boletoid mushroom-forming Xerocomus chrysenteron complex and that it does not form a monophyletic clade with other Octaviania species. Our morphological reevaluation, including transmission electron microscopic observation of basidiospores, clarified the taxonomic boundary between O. columellifera and other Japanese Octaviania species. Accordingly we propose a new genus, Heliogaster, for O. columellifera with designation of the lectotype. We discuss phylogenetic relationships with Octaviania sensu stricto species and the closely related boletoid (pileate-stipitate) fungi, generic characters of Heliogaster and intraspecific phylogeny.


Mycoscience | 2005

Community analysis of arbuscular mycorrhizal fungi in a warm-temperate deciduous broad-leaved forest and introduction of the fungal community into the seedlings of indigenous woody plants

Masahide Yamato; Koji Iwase

A community of arbuscular mycorrhizal (AM) fungi was investigated in a warm-temperate deciduous broad-leaved forest using a molecular analysis method. Root samples were obtained from the forest, and DNA was extracted from the samples. Partial 18S rDNA of AM fungi were amplified from the extracted DNA by polymerase chain reaction using a universal eukaryotic primer NS31 and an AM fungal-specific primer AM1. After cloning the PCR products, 394 clones were obtained in total, which were divided into five types by restriction fragment length polymorphism (RFLP) with HinfI, RsaI, and Hsp92II. More than 20% of the clones were randomly selected from each RFLP type and sequenced. Phylogenetic analysis showed that all the obtained clones belonged to Glomus but could not be identified at species level. Topsoil of the forest containing plant roots was inoculated to nonmycorrhizal seedlings of indigenous woody plants, Rhus javanica var. roxburghii and Clethra barvinervis, to introduce the community of AM fungi into the seedlings. Among these five RFLP types, four types were detected from both seedlings, which indicates that the AM fungal community in the forest root samples was introduced at least partly into the seedlings. Meanwhile, an additional four types that were not found in the forest root samples were newly detected in the seedlings, these types were closely related to one another and close to G. fasciculatum or G. intraradices. It is expected that a community of indigenous diverse AM fungi could be introduced into target fields by planting these mycorrhizal seedlings.


American Journal of Botany | 2013

Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae)

Takahiro Yagame; Eriko Funabiki; Eiji Nagasawa; Toshimitsu Fukiharu; Koji Iwase

UNLABELLED PREMISE OF THE STUDY Photosynthetic orchids found in highly shaded forests are often mixotrophic, receiving part of their carbon energy via ectomycorrhizal fungi that had originally received carbohydrate from trees. A photosynthetic orchid, Cremastra appendiculata, is also found under highly shaded forest, but our preliminary data suggested that its associated fungi were not ectomycorrhizal. We tested whether their relation is an unusual example of a mixotrophic orchid associating with saprotrophic fungi by direct detection of fungal DNAs in conjunction with isolation of the fungus in pure culture and experimental inoculation of orchid seeds with the fungus. • METHODS For isolated mycobionts of C. appendiculata plants, two regions of nuclear ribosomal DNA, the internal transcribed spacer (ITS) and the large subunit (LSU), were sequenced, and fruiting bodies of the one isolate, SI1-1 were induced. In addition, two fungal isolates, SI1-1 and KI1-1, were grown in symbiotic cultures with C. appendiculata to verify their status as mycobionts. • KEY RESULTS In phylogenetic analyses, all isolates clustered with fungi belonging to Coprinellus in Psathyrellaceae of Agaricales. Phylogenetic analyses of these DNA sequences showed that five fungal isolates from C. appendiculata, including SI1-1 and two mycobionts isolated from the mycoheterotrophic orchid Epipogium roseum, have very similar ITS sequences. Isolate SI1-1 was identified as Coprinellus domesticus based on the morphological characteristics of the fruiting body. Isolates SI1-1 and KI1-1 induced seed germination of C. appendiculata as mycobionts. • CONCLUSIONS This report is the first of a mycorrhizal symbiosis between a fungus in Psathyrellaceae and a photosynthetic orchid, revealing a new pathway to full mycoheterotrophy and contributing to our understanding of the evolution of mycoheterotrophy.


Mycorrhiza | 2012

Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae)

Masahide Yamato; Takahiro Yagame; Yuko Yoshimura; Koji Iwase

The community structure of arbuscular mycorrhizal (AM) fungi associated with Ixeris repens was studied in coastal vegetation near the Tottori sand dunes in Japan. I. repens produces roots from a subterranean stem growing near the soil surface which provides an opportunity to examine the effects of an environmental gradient related to distance from the sea on AM fungal communities at a regular soil depth. Based on partial sequences of the nuclear large subunit ribosomal RNA gene, AM fungi in root samples were divided into 17 phylotypes. Among these, five AM fungal phylotypes in Glomus and Diversispora were dominant near the seaward forefront of the vegetation. Redundancy analysis of the AM fungal community showed significant relationships between the distribution of phylotypes and environmental variables such as distance from the sea, water-soluble sodium in soil, and some coexisting plant species. These results suggest that environmental gradients in the coastal vegetation can be determinants of the AM fungal community.

Collaboration


Dive into the Koji Iwase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takamichi Orihara

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshimitsu Fukiharu

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge