Koji Murakawa
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koji Murakawa.
The Astrophysical Journal | 2004
Misato Fukagawa; Masahiko Hayashi; Motohide Tamura; Yoichi Itoh; Saeko S. Hayashi; Yumiko Oasa; Taku Takeuchi; J.-I. Morino; Koji Murakawa; Shin Oya; Takuya Yamashita; Hiroshi Suto; Satoshi Mayama; Takahiro Naoi; Miki Ishii; Tae-Soo Pyo; Takayuki Nishikawa; Naruhisa Takato; Tomonori Usuda; Hiroyasu Ando; Masanori Iye; Shoken M. Miyama; Norio Kaifu
We present a near-infrared image of the Herbig Ae star AB Aur obtained with the Coronagraphic Imager with Adaptive Optics mounted on the Subaru Telescope. The image shows a circumstellar emission extending out to a radius of r = 580 AU, with a double spiral structure detected at r = 200-450 AU. The surface brightness decreases as r-3.0±0.1, steeper than the radial profile of the optical emission possibly affected by the scattered light from the envelope surrounding AB Aur. This result, together with the size of the infrared emission similar to that of the 13CO (J = 1-0) disk, suggests that the spiral structure is indeed associated with the circumstellar disk but is not part of the extended envelope. We identified four major spiral arms, which are trailing if the brighter southeastern part of the disk is the near side. The weak gravitational instability, maintained for millions of years by continuous mass supply from the envelope, might explain the presence of the spiral structure at the relatively late phase of the pre-main-sequence period.
Publications of the Astronomical Society of Japan | 2004
Masanori Iye; Hiroshi Karoji; Hiroyasu Ando; Norio Kaifu; Keiichi Kodaira; Kentaro Aoki; Wako Aoki; Yoshihiro Chikada; Yoshiyuki Doi; Noboru Ebizuka; Brian Elms; Gary Fujihara; Hisanori Furusawa; Tetsuharu Fuse; Wolfgang Gaessler; Sumiko Harasawa; Yutaka Hayano; Masahiko Hayashi; Saeko S. Hayashi; Shin-ichi Ichikawa; Masatoshi Imanishi; Catherine Mie Ishida; Yukiko Kamata; Tomio Kanzawa; Nobunari Kashikawa; Koji S. Kawabata; Naoto Kobayashi; Yutaka Komiyama; George Kosugi; Tomio Kurakami
An overview of the current status of the 8.2m Subaru Telescope constructed and operated at Mauna Kea, Hawaii, by the National Astronomical Observatory of Japan is presented. The basic design concept and the verified performance of the telescope system are described. Also given are the status of the instrument package offered to the astronomical community, the status of operation, and some of the future plans. The status of the telescope reported in a number of SPIE papers as of the summer of 2002 are incorporated with some updates included as of 2004 February. However, readers are encouraged to check the most updated status of the telescope through the home page, http://subarutelescope.org/index.html, and/or the direct contact with the observatory staff.
The Astrophysical Journal | 2005
Yoichi Itoh; Masahiko Hayashi; Motohide Tamura; Takashi Tsuji; Yumiko Oasa; Misato Fukagawa; Saeko S. Hayashi; Takahiro Naoi; Miki Ishii; Satoshi Mayama; J.-I. Morino; Takuya Yamashita; Tae-Soo Pyo; Takayuki Nishikawa; Tomonori Usuda; Koji Murakawa; Hiroshi Suto; Shin Oya; Naruhisa Takato; Hiroyasu Ando; Shoken M. Miyama; Naoto Kobayashi; Norio Kaifu
We present the detection of a young brown dwarf companion, DH Tau B, associated with the classical T Tauri star DH Tau. Near-infrared coronagraphic observations with CIAO on the Subaru Telescope have revealed DH Tau B with H = 15 mag located 23 (330 AU) away from the primary, DH Tau A. Comparing its position with a Hubble Space Telescope archive image, we confirmed that DH Tau A and B share a common proper motion, suggesting that they are physically associated with each other. The near-infrared color of DH Tau B is consistent with those of young stellar objects. The near-infrared spectra of DH Tau B show deep water absorption bands, a strong K I absorption line, and a moderate Na I absorption line. We derived its effective temperature and surface gravity of Teff = 2700-2800 K and log g = 4.0-4.5, respectively, by comparing the observed spectra with synthesized spectra of low-mass objects. The location of DH Tau B on the H-R diagram gives its mass of 30MJ-50MJ.
Monthly Notices of the Royal Astronomical Society | 2004
P. W. Lucas; Misato Fukagawa; Motohide Tamura; A. F. Beckford; Yoichi Itoh; Koji Murakawa; Hiroshi Suto; Saeko S. Hayashi; Yumiko Oasa; Takahiro Naoi; Yoshiyuki Doi; Noboru Ebizuka; Norio Kaifu
We present high quality near infrared imaging polarimetry of HL Tau at 0.4 to 0.6 arcsec resolution, obtained with Subaru/CIAO and UKIRT/IRCAM. 3-D Monte Carlo modelling with aligned oblate grains is used to probe the structure of the circumstellar envelope and the magnetic field, as well as the dust properties. At J band the source shows a centrosymmetric pattern dominated by scattered light. In the H and K bands the central source becomes visible and its polarisation appears to be dominated by dichroic extinction, with a position angle inclined by � 40 ◦ to the disc axis. The polarisation pattern of the environs on scales up to 200 AU is consistent with the same dichroic extinction signature superimposed on the centrosymmetric scattering pattern. These data can be modelled with a magnetic field which is twisted on scales from tens to hundreds of AU, or alternatively by a field which is globally misaligned with the disc axis. A unique solution to the field structure will require spatially resolved circular polarisation data. The best fit Monte Carlo model indicates a shallow near infrared extinction law. When combined with the observed high polarisation and non-negligible albedo these constraints can be fitted with a grain model involving dirty water ice mantles in which the largest particles have radii slightly in excess of 1 µm. The best fit model has an envelope structure which is slightly flattened on scales up to several hundred AU. Both lobes of the bipolar outflow cavity contain a substantial optical depth of dust (not just within the cavity walls). Curved, approximately parabolic, cavity walls fit the data better than a conical cavity. The small inner accretion disc observed at millimetre wavelengths is not seen at this spatial resolution.
The Astrophysical Journal | 2015
Akimasa Kataoka; Takayuki Muto; Munetake Momose; Takashi Tsukagoshi; Misato Fukagawa; Hiroshi Shibai; Tomoyuki Hanawa; Koji Murakawa; Cornelis P. Dullemond
We present a new method to constrain the grain size in protoplanetary disks with polarization observations at millimeter wavelengths. If dust grains are grown to the size comparable to the wavelengths, the dust grains are expected to have a large scattering opacity and thus the continuum emission is expected to be polarized due to self-scattering. We perform 3D radiative transfer calculations to estimate the polarization degree for the protoplanetary disks having radial Gaussian-like dust surface density distributions, which have been recently discovered. The maximum grain size is set to be
Astronomy and Astrophysics | 2010
Jose H. Groh; Krister Emanuel Nielsen; Augusto Damineli; Theodore R. Gull; Thomas I. Madura; D. J. Hillier; Mairan Teodoro; Thomas M. Driebe; G. Weigelt; Henrik Hartman; Florian Kerber; Atsuo T. Okazaki; Stanley P. Owocki; F. Millour; Koji Murakawa; Stefan Kraus; Karl-Heinz Hofmann; D. Schertl
100 {\rm~\mu m}
The Astronomical Journal | 2007
Toshiya Ueta; Koji Murakawa; Margaret M. Meixner
and the observing wavelength to be 870
Astronomy and Astrophysics | 2010
Koji Murakawa
{\rm \mu m}
Optics Letters | 1997
Benjamin B. Dingel; Masayuki Izutsu; Koji Murakawa
. We find that the polarization degree is as high as 2.5 % with a subarcsec spatial resolution, which is likely to be detected with near-future ALMA observations. The emission is polarized due to scattering of anisotropic continuum emission. The map of the polarization degree shows a double peaked distribution and the polarization vectors are in the radial direction in the inner ring and in the azimuthal direction in the outer ring. We also find the wavelength dependence of the polarization degree: the polarization degree is the highest if dust grains have a maximum size of
The Astrophysical Journal | 2006
Toshiya Ueta; Koji Murakawa; Margaret M. Meixner
a_{\rm max}\sim\lambda/2\pi