Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koji Okamoto is active.

Publication


Featured researches published by Koji Okamoto.


Molecular and Cellular Biology | 2005

DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation.

Koji Okamoto; Kenji Kashima; Yaron Pereg; Michiko Ishida; Satomi Yamazaki; Ayumi Nota; Amina Teunisse; Domenico Migliorini; Issay Kitabayashi; Jean-Christophe Marine; Carol Prives; Yosef Shiloh; Aart G. Jochemsen; Yoichi Taya

ABSTRACT Understanding how p53 activity is regulated is crucial in elucidating mechanisms of cellular defense against cancer. Genetic data indicate that Mdmx as well as Mdm2 plays a major role in maintaining p53 activity at low levels in nonstressed cells. However, biochemical mechanisms of how Mdmx regulates p53 activity are not well understood. Through identification of Mdmx-binding proteins, we found that 14-3-3 proteins are associated with Mdmx. Mdmx harbors a consensus sequence for binding of 14-3-3. Serine 367 (S367) is located within the putative binding sequence for 14-3-3, and its substitution with alanine (S367A) abolishes binding of Mdmx to 14-3-3. Transfection assays indicated that the S367A mutation, in cooperation with Mdm2, enhances the ability of Mdmx to repress the transcriptional activity of p53. The S367A mutant is more resistant to Mdm2-dependent ubiquitination and degradation than wild-type Mdmx, and Mdmx phosphorylated at S367 is preferentially degraded by Mdm2. Several types of DNA damage markedly enhance S367 phosphorylation, coinciding with increased binding of Mdmx to 14-3-3 and accelerated Mdmx degradation. Furthermore, promotion of growth of normal human fibroblasts after introduction of Mdmx is enhanced by the S367 mutation. We propose that Mdmx phosphorylation at S367 plays an important role in p53 activation after DNA damage by triggering Mdm2-dependent degradation of Mdmx.


Oncogene | 1999

A role of cyclin G in the process of apoptosis.

Koji Okamoto; Carol Prives

Cyclin G was previously identified as a target gene of the p53 tumor suppresser protein, and levels of cyclin G are increased after induction of p53 by DNA damage. However, the function of cyclin G has not been established. To determine the effect of increased expression of cyclin G, retroviruses encoding cyclin G were constructed and used to infect three different murine cell lines. Cyclin G protein levels induced by the retroviruses were within the range seen after DNA damage induction of p53. In each case we observed that such over-expression of cyclin G augments the apoptotic process. TNF-α induction of apoptosis is increased by expression of cyclin G in NIH3T3 fibroblasts which express p53, as well as in 10.1 fibroblasts which contain no p53 allele. Additionally, we observed that while cyclin G expression is markedly reduced upon aggregate formation in embryonic carcinoma P19 cells, retrovirus-mediated over-expression of cyclin G enhances apoptotic cell death in aggregated P19 cells, and increases the extent of apoptosis caused by retinoic acid or serum starvation of these cells. These data demonstrate that cyclin G plays a facilitating role in modulating apoptosis induced by different stimuli. Moreover, we have discovered that cyclin G expression is rapidly induced in P19 cells after exposure to Bone Morphogenic Protein-4 (BMP-4), suggesting that cyclin G may mediate apoptotic signals generated by BMP-4.


Molecular and Cellular Biology | 2006

Differential Roles of ATM- and Chk2-Mediated Phosphorylations of Hdmx in Response to DNA Damage

Yaron Pereg; Suzanne Lam; Amina Teunisse; Sharon Biton; Erik Meulmeester; Leonid Mittelman; Giacomo Buscemi; Koji Okamoto; Yoichi Taya; Yosef Shiloh; Aart G. Jochemsen

ABSTRACT The p53 tumor suppressor plays a major role in maintaining genomic stability. Its activation and stabilization in response to double strand breaks (DSBs) in DNA are regulated primarily by the ATM protein kinase. ATM mediates several posttranslational modifications on p53 itself, as well as phosphorylation of p53s essential inhibitors, Hdm2 and Hdmx. Recently we showed that ATM- and Hdm2-dependent ubiquitination and subsequent degradation of Hdmx following DSB induction are mediated by phosphorylation of Hdmx on S403, S367, and S342, with S403 being targeted directly by ATM. Here we show that S367 phosphorylation is mediated by the Chk2 protein kinase, a downstream kinase of ATM. This phosphorylation, which is important for subsequent Hdmx ubiquitination and degradation, creates a binding site for 14-3-3 proteins which controls nuclear accumulation of Hdmx following DSBs. Phosphorylation of S342 also contributed to optimal 14-3-3 interaction and nuclear accumulation of Hdmx, but phosphorylation of S403 did not. Our data indicate that binding of a 14-3-3 dimer and subsequent nuclear accumulation are essential steps toward degradation of p53s inhibitor, Hdmx, in response to DNA damage. These results demonstrate a sophisticated control by ATM of a target protein, Hdmx, which itself is one of several ATM targets in the ATM-p53 axis of the DNA damage response.


Oncogene | 2003

Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export.

Tomomi Shinozaki; Ayumi Nota; Yoichi Taya; Koji Okamoto

Mdm2 oncoprotein plays a major role in inhibiting the p53 tumor suppressor protein. Here, we investigate phosphorylation of Mdm2 at serine 407 (S407). S407 is phosphorylated in cells after treatment with camptothecin (CPT) or hydroxyurea, inhibitors of DNA replication. S407 phosphorylation after CPT treatment is induced upon cell cycle arrest during S phase and prevented if entry into S phase of cell cycle is blocked. We found that a major kinase responsible for S407 phosphorylation is ATR, a DNA damage checkpoint protein that induces cell cycle arrest and promotes DNA repair in response to impaired DNA replication; induction of S407 phosphorylation is enhanced after expression of wild-type ATR, while it is inhibited by a dominant-negative form of ATR. Further, S407 is specifically phosphorylated by ATR in vitro. Substitution of S407 with aspartate (S407D), but not with alanine (S407A), promotes nuclear localization of p53. Taken together, our data indicate that S407 phosphorylation of Mdm2 by ATR reduces Mdm2-dependent export of p53 from nuclei to cytoplasm.


FEBS Letters | 2009

Mdmx enhances p53 ubiquitination by altering the substrate preference of the Mdm2 ubiquitin ligase

Koji Okamoto; Yoichi Taya; Hitoshi Nakagama

MINT‐7220023: Ubiquitin (uniprotkb:P62988) physically interacts (MI:0914) with P53 (uniprotkb:P04637) by pull down (MI:0096)


PeerJ | 2013

Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system

Takuro Horii; Sumiyo Morita; Mika Kimura; Ryouhei Kobayashi; Daiki Tamura; Ryou U. Takahashi; Hironobu Kimura; Isao Suetake; Hirokazu Ohata; Koji Okamoto; Shoji Tajima; Takahiro Ochiya; Yumiko Abe; Izuho Hatada

Haploid embryonic stem cells (ESCs) are useful for studying mammalian genes because disruption of only one allele can cause loss-of-function phenotypes. Here, we report the use of haploid ESCs and the CRISPR RNA-guided Cas9 nuclease gene-targeting system to manipulate mammalian genes. Co-transfection of haploid ESCs with vectors expressing Cas9 nuclease and single-guide RNAs (sgRNAs) targeting Tet1, Tet2, and Tet3 resulted in the complete disruption of all three genes and caused a loss-of-function phenotype with high efficiency (50%). Co-transfection of cells with vectors expressing Cas9 and sgRNAs targeting two loci on the same chromosome resulted in the creation of a large chromosomal deletion and a large inversion. Thus, the use of the CRISPR system in combination with haploid ESCs provides a powerful platform to manipulate the mammalian genome.


Cancer Science | 2017

Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications

Tatsuya Ishiguro; Hirokazu Ohata; Ai Sato; Kaoru Yamawaki; Takayuki Enomoto; Koji Okamoto

Recently, many types of in vitro 3‐D culture systems have been developed to recapitulate the in vivo growth conditions of cancer. The cancer 3‐D culture methods aim to preserve the biological characteristics of original tumors better than conventional 2‐D monolayer cultures, and include tumor‐derived organoids, tumor‐derived spheroids, organotypic multicellular spheroids, and multicellular tumor spheroids. The 3‐D culture methods differ in terms of cancer cell sources, protocols for cell handling, and the required time intervals. Tumor‐derived spheroids are unique because they are purposed for the enrichment of cancer stem cells (CSCs) or cells with stem cell‐related characteristics. These spheroids are grown as floating spheres and have been used as surrogate systems to evaluate the CSC‐related characteristics of solid tumors in vitro. Because eradication of CSCs is likely to be of clinical importance due to their association with the malignant nature of cancer cells, such as tumorigenicity or chemoresistance, the investigation of tumor‐derived spheroids may provide invaluable clues to fight against cancer. Spheroid cultures have been established from cancers including glioma, breast, colon, ovary, and prostate cancers, and their biological and biochemical characteristics have been investigated by many research groups. In addition to the investigation of CSCs, tumor‐derived spheroids may prove to be instrumental for a high‐throughput screening platform or for the cultivation of CSC‐related tumor cells found in the circulation or body fluids.


Journal of Biochemistry | 2008

Characterization of the Molecular Interaction between Tropoelastin and DANCE/Fibulin-5

Hiroshi Wachi; Risa Nonaka; Kayoko Shibata-Sato; Marie Ishida; Saori Iketani; Iori Maeda; Koji Okamoto; Zsolt Urban; Satoshi Onoue; Yoshiyuki Seyama

Fibulin-5 is believed to play an important role in the elastic fiber formation. The present experiments were carried out to characterize the molecular interaction between fibulin-5 and tropoelastin. Our data showed that the divalent cations of Ca(2+), Ba(2+) and Mg(2+) significantly enhanced the binding of fibulin-5 to tropoelastin. In addition, N-linked glycosylation of fibulin-5 does not require for the binding to tropoelastin. To address the fibulin-5 binding site on tropoelastin constructs containing, exons 2-15 and exons 16-36, of tropoelastin were used. Fibulin-5 binding was significantly reduced to either fragment and also to a mixture of the two fragments. These results suggested that the whole molecule of tropoelastin was required for the interaction with fibulin-5. In co-immunoprecipitation experiments, tropoelastin binding to fibulin-5 was enhanced by an increase of temperature and sodium chloride concentration, conditions that enhance the coacervation of tropoelastin. The binding of tropoelastin fragments to fibulin-5 was directly proportional to their propensity to coacervate. Furthermore, the addition of fibulin-5 to tropoelastin facilitated coacervation. Taken together, the present study shows that fibulin-5 enhances elastic fiber formation in part by improving the self-association properties of tropoelastin.


Scientific Reports | 2015

siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene

Kosuke Minami; Koji Okamoto; Kent Doi; Koji Harano; Eisei Noiri; Eiichi Nakamura

The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.


Cancer Science | 2014

MKK7 mediates miR-493-dependent suppression of liver metastasis of colon cancer cells

Hiroaki Sakai; Ai Sato; Yuki Aihara; Yoshinori Ikarashi; Yutaka Midorikawa; Michael Kracht; Hitoshi Nakagama; Koji Okamoto

The prognosis of advanced colon cancer patients is profoundly affected by the presence or absence of liver metastasis. miR‐493 functions as a potent suppressor of liver metastasis, and low‐level miR‐493 expression in human primary colon cancer is associated with an elevated incidence of liver metastasis. We previously showed that IGF1R is a target gene of miR‐493, and that the inhibition of IGF1R partly explains how miR‐493 suppresses liver metastasis. However, major functional targets that mediate the antimetastatic activity of miR‐493 remain elusive. Here, we extended our search for target genes and identified MKK7, a mitogen‐activated protein kinase kinase, as a novel target of miR‐493. miR‐493 inhibits MKK7 expression by targeting the binding site at the 3′‐UTR of the mkk7 gene. MKK7 was expressed in six out of seven colon cancer cell lines examined but not in non‐transformed colon epithelial cells, and its expression was required for the activating phosphorylation of JNK. RNA interference‐mediated inhibition of MKK7 resulted in marked suppression of liver metastasis of colon cancer cells. A significant decrease of metastasized cells by the MKK7 knockdown was observed, even at early stages of the metastatic settlement, in accordance with a time course of the miR‐493‐mediated inhibition of the metastasis. Immunohistochemical examination in human primary colon tumors revealed that the occurrence of liver metastasis is associated with elevated levels of MKK7. Thus, MKK7 is a major functional target of miR‐493, and its suppression thwarts liver metastasis of colon cancer cells.

Collaboration


Dive into the Koji Okamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiro Ikeda

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Inoue

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoichi Taya

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge