Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koji Sayama is active.

Publication


Featured researches published by Koji Sayama.


Journal of Immunology | 2005

Induction of Keratinocyte Migration via Transactivation of the Epidermal Growth Factor Receptor by the Antimicrobial Peptide LL-37

Sho Tokumaru; Koji Sayama; Yuji Shirakata; Hitoshi Komatsuzawa; Kazuhisa Ouhara; Yasushi Hanakawa; Yoko Yahata; Xiuju Dai; Mikiko Tohyama; Hiroshi Nagai; Lujun Yang; Shigeki Higashiyama; Akihiko Yoshimura; Motoyuki Sugai; Koji Hashimoto

The closure of skin wounds is essential for resistance against microbial pathogens, and keratinocyte migration is an important step in skin wound healing. Cathelicidin hCAP18/LL-37 is an innate antimicrobial peptide that is expressed in the skin and acts to eliminate microbial pathogens. Because hCAP18/LL-37 is up-regulated at skin wound sites, we hypothesized that LL-37 induces keratinocyte migration. In this study, we found that 1 μg/ml LL-37 induced the maximum level of keratinocyte migration in the Boyden chamber assay. In addition, LL-37 phosphorylated the epidermal growth factor receptor (EGFR) after 10 min, which suggests that LL-37-induced keratinocyte migration occurs via EGFR transactivation. To test this assumption, we used inhibitors that block the sequential steps of EGFR transactivation, such as OSU8-1, CRM197, anti-EGFR no. 225 Ab, and AG1478. All of these inhibitors completely blocked LL-37-induced keratinocyte migration, which indicates that migration occurs via HB-EGF-mediated EGFR transactivation. Furthermore, CRM197, anti-EGFR no. 225, and AG1478 blocked the LL-37-induced phosphorylation of STAT3, and transfection with a dominant-negative mutant of STAT3 abolished LL-37-induced keratinocyte migration, indicating the involvement of the STAT3 pathway downstream of EGFR transactivation. Finally, we tested whether the suppressor of cytokine signaling (SOCS)/cytokine-inducible Src homology 2-containing protein (CIS) family of negative regulators of STAT3 regulates LL-37-induced keratinocyte migration. Transfection with SOCS1/Jak2 binding protein or SOCS3/CIS3 almost completely abolished LL-37-induced keratinocyte migration. In conclusion, LL-37 induces keratinocyte migration via heparin-binding-EGF-mediated transactivation of EGFR, and SOCS1/Jak 2 binding and SOCS3/CIS3 negatively regulate this migration. The results of this study suggest that LL-37 closes skin wounds by the induction of keratinocyte migration.


Journal of Cell Science | 2005

Heparin-binding EGF-like growth factor accelerates keratinocyte migration and skin wound healing

Yuji Shirakata; Rina Kimura; Daisuke Nanba; Ryo Iwamoto; Sho Tokumaru; Chie Morimoto; Koichi Yokota; Masanori Nakamura; Koji Sayama; Eisuke Mekada; Shigeki Higashiyama; Koji Hashimoto

Members of the epidermal growth factor (EGF) family are the most important growth factors involved in epithelialization during cutaneous wound healing. Heparin-binding EGF-like growth factor (HB-EGF), a member of the EGF family, is thought to play an important role in skin wound healing. To investigate the in vivo function of HB-EGF in skin wound healing, we generated keratinocyte-specific HB-EGF-deficient mice using Cre/loxP technology in combination with the keratin 5 promoter. Studies of wound healing revealed that wound closure was markedly impaired in keratinocyte-specific HB-EGF-deficient mice. HB-EGF mRNA was upregulated at the migrating epidermal edge, although cell growth was not altered. Of the members of the EGF family, HB-EGF mRNA expression was induced the most rapidly and dramatically as a result of scraping in vitro. Combined, these findings clearly demonstrate, for the first time, that HB-EGF is the predominant growth factor involved in epithelialization in skin wound healing in vivo and that it functions by accelerating keratinocyte migration, rather than proliferation.


Journal of Biological Chemistry | 2003

Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation.

Yoko Yahata; Yuji Shirakata; Sho Tokumaru; Kenshi Yamasaki; Koji Sayama; Yasushi Hanakawa; Michael Detmar; Koji Hashimoto

Vascular endothelial growth factor (VEGF) is a potent, multifunctional, endothelial-cell-specific growth factor. It stimulates proliferation and migration of endothelial cells. Characterization of intracellular signal transduction after VEGF and VEGF receptor (VEGFR) interaction has demonstrated the involvement of the mitogen-activated protein kinase pathway. However, several studies indicated that signal transducers and activators of transcription (STAT) is another important pathway downstream of VEGF/VEGFR interaction. Therefore, we studied the role of STAT3 in the migration and tube formation of the human dermal microvascular endothelial cells (HDMEC). HDMEC expressed phosphorylated forms of STAT1, STAT3, and STAT5, and a marked increase of phosphorylated STAT3 in the nuclear fraction after addition of VEGF was observed by Western blot and immunohistochemical staining. To verify the functional implication of STAT3 phosphorylation in HDMEC migration, we introduced a dominant-negative STAT3 using adenovirus vector system. Dominant-negative STAT3 abolished the VEGF-induced nuclear translocation of phosphorylated STAT3 and inhibited HDMEC migration completely. Dominant-negative STAT3 also suppressed VEGF-induced HDMEC tube formation on Matrigel and on collagen gel. These data demonstrate that STAT3 and its phosphorylation are involved in the downstream pathway of VEGF/VEGFR interaction and regulate VEGF-induced HDMEC migration and tube formation.


Journal of Biological Chemistry | 2006

A Novel Function of Angiotensin II in Skin Wound Healing INDUCTION OF FIBROBLAST AND KERATINOCYTE MIGRATION BY ANGIOTENSIN II VIA HEPARIN-BINDING EPIDERMAL GROWTH FACTOR (EGF)-LIKE GROWTH FACTOR-MEDIATED EGF RECEPTOR TRANSACTIVATION

Yoko Yahata; Yuji Shirakata; Sho Tokumaru; Lujun Yang; Xiuju Dai; Mikiko Tohyama; Teruko Tsuda; Koji Sayama; Masaru Iwai; Masatsugu Horiuchi; Koji Hashimoto

The role of angiotensin II (Ang II) in the control of systemic blood pressure and volume homeostasis is well known and has been extensively studied. Recently, Ang II was suggested to also have a function in skin wound healing. In the present study, the in vivo function of Ang II in skin wound healing was investigated using Ang II type 1 receptor (AT1R) knock-out mice. Wound healing in these mice was found to be markedly delayed. Keratinocytes and fibroblasts play important roles in wound healing, and thus the effect of Ang II on the migration of these cells was examined. Ang II stimulated keratinocyte and fibroblast migration in a dose-dependent manner. It has been reported that G protein-coupled receptor (GPCR) activation induces epidermal growth factor (EGF) receptor (EGFR) transactivation through the shedding of heparin-binding EGF-like growth factor (HB-EGF). As AT1R is a GPCR, it was hypothesized that Ang II-induced keratinocyte and fibroblast migration is mediated by EGFR transactivation. Ang II induced EGFR phosphorylation, which was inhibited by an AT1R antagonist, HB-EGF neutralizing antibody, and an HB-EGF antagonist in both keratinocytes and in fibroblasts. Moreover, Ang II-induced migration of keratinocytes and fibroblasts was also prevented by these inhibitors. Taken together, these findings clearly demonstrate, for the first time, that Ang II plays an important role in skin wound healing and that it functions by accelerating keratinocyte and fibroblast migration in a process mediated by HB-EGF shedding.


Journal of Dermatology | 1990

Subclass Characteristics of IgG Autoantibodies in Bullous Pemphigoid and Pemphigus

Yuji Shirakata; S. Shiraishi; Koji Sayama; Yoshiharu Miki

Immunoglobulin (Ig) G subclasses in anti‐basement membrane zone (BMZ) autoantibodies found in the sera of bullous pemphigoid (BP) and in anti‐intercellular substance (ICS) autoantibodies of pemphigus were investigated using immunofluorescent (IF) staining. In BP, IgG4, IgG1, and IgG2 were detected in 13, 5 and 6 of 15 patients, respectively; IgG3 was not detected. In pemphigus, IgG4 was detected in all of 10 patients, IgG1 in 7, IgG2 in one, and IgG3 in one patient, respectively. In both BP and pemphigus, the most prominent subclass in intensity of IF staining was IgG4. Although one BP and one PV patient had only IgG4 autoantibodies, C3 deposition was detected.


European Journal of Immunology | 2005

New mechanisms of skin innate immunity: ASK1‐mediated keratinocyte differentiation regulates the expression of β‐defensins, LL37, and TLR2

Koji Sayama; Hitoshi Komatsuzawa; Kenshi Yamasaki; Yuji Shirakata; Yasushi Hanakawa; Kazuhisa Ouhara; Sho Tokumaru; Xiuju Dai; Mikiko Tohyama; Peter ten Dijke; Motoyuki Sugai; Hidenori Ichijo; Koji Hashimoto

Epidermal keratinocytes differentiate and form a multilayered epidermis, which is the primary barrier between the body and the outer environment. As the epidermis is constantly exposed to a variety of microbial pathogens, its function of resisting microbial pathogens is vital. This characteristic feature is formed during differentiation. Immunohistochemical analysis revealed that the upper epidermis of normal human skin expresses β‐defensins 1–3 and LL37. We hypothesized that epidermal keratinocytes develop an innate immune barrier based on human β‐defensins (hBD) and LL37 during differentiation. To prove this, we introduced an active form of the apoptosis signal‐regulating kinase‐1 (ASK1), an intracellular regulator of keratinocyte differentiation, into cultured normal human keratinocytes. Transfection of this active form, ASK1‐ΔN, significantly enhanced the expression of hBD1–3 and LL37. In addition, a p38 inhibitor abolished this induction, indicating that the ASK1‐p38 cascade regulates the expression of hBD1–3 and LL37. Furthermore, the ASK1‐p38 pathway also regulated the expression of Toll‐like receptor (TLR)2 in keratinocytes. Contact between S. aureus and keratinocytes resulted in the phosphorylation of p38 and induced the expression of hBD2 and hBD3. Moreover, the p38 inhibitor reduced this induction. In conclusion, the ASK1‐p38 cascade regulates the innate immunity of the skin by forming an immune barrier consisting of hBD, LL37, and TLR2 during epidermal differentiation.


Journal of Biological Chemistry | 2006

Transforming Growth Factor-β-activated Kinase 1 Is Essential for Differentiation and the Prevention of Apoptosis in Epidermis

Koji Sayama; Yasushi Hanakawa; Hiroshi Nagai; Yuji Shirakata; Xiuju Dai; Satoshi Hirakawa; Sho Tokumaru; Mikiko Tohyama; Lujun Yang; Shintaro Sato; Akira Shizuo; Koji Hashimoto

Transforming growth factor-β-activated kinase 1 (TAK1) is a member of the mitogen-activated protein (MAP) kinase family and is an upstream signaling molecule of nuclear factor-κB (NF-κB). Given that NF-κB regulates keratinocyte differentiation and apoptosis, TAK1 may be essential for epidermal functions. To test this, we generated keratinocyte-specific TAK1-deficient mice from Map3k7flox/flox mice and K5-Cre mice. The keratinocyte-specific TAK1-deficient mice were macroscopically indistinguishable from their littermates until postnatal day 2 or 3, when the skin started to roughen and wrinkle. This phenotype progressed, and the mice died by postnatal day 7. Histological analysis showed thickening of the epidermis with foci of keratinocyte apoptosis and intra-epidermal micro-abscesses. Immunohistochemical analysis showed that the suprabasal keratinocytes of the TAK1-deficient epidermis expressed keratin 5 and keratin 14, which are normally confined to the basal layer. The expression of keratin 1, keratin 10, and loricrin, which are markers for the suprabasal and late phase differentiation of the epidermis, was absent from the TAK1-deficient epidermis. Furthermore, the TAK1-deficient epidermis expressed keratin 16 and had an increased number of Ki67-positive cells. These data indicate that TAK1 deficiency in keratinocytes results in abnormal differentiation, increased proliferation, and apoptosis in the epidermis. However, the keratinocytes from the TAK1-deficient epidermis induced keratin 1 in suspension culture, indicating that the TAK1-deficient keratinocytes retain the ability to differentiate. Moreover, the removal of TAK1 from cultured keratinocytes of Map3k7flox/flox mice resulted in apoptosis, indicating that TAK1 is essential for preventing apoptosis. In conclusion, TAK1 is essential in the regulation of keratinocyte growth, differentiation, and apoptosis.


Journal of Antimicrobial Chemotherapy | 2008

Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus.

Kazuhisa Ouhara; Hitoshi Komatsuzawa; Toshihisa Kawai; Hiromi Nishi; Tamaki Fujiwara; Yoshihiro Fujiue; Masao Kuwabara; Koji Sayama; Koji Hashimoto; Motoyuki Sugai

OBJECTIVES The susceptibility of clinical isolates of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), to host-derived cationic antimicrobial peptides was investigated. METHODS We examined the susceptibility of 190 clinical strains of methicillin-susceptible S. aureus (MSSA) and 304 strains of MRSA to two different classes of cationic antimicrobial peptides: LL-37 and human beta-defensin-3 (hBD3). Out of the total 494 clinical strains, a random selection of 54 S. aureus strains was examined to establish the relationship between the net charge, or zeta potential, of each strain and its susceptibility to hBD3 or LL-37. To further confirm bacterial susceptibility to either hBD3 or LL-37, we concurrently measured: (i) percentage survival after in vitro bacterial exposure and (ii) MBCs for both MRSA and MSSA strains. RESULTS Of the 54 randomly selected S. aureus strains, those MRSA strains resistant to LL-37 showed significantly higher zeta potentials than those susceptible to LL-37 (P < 0.05). In contrast, there was no difference in bacterial zeta potentials for MRSA strains that showed either resistance or susceptibility to hBD3. In addition, resistance to LL-37, but not to hBD3, as determined by either percentage survival or MBC, was significantly elevated in highly methicillin-resistant strains of S. aureus when compared with MSSA strains (P < 0.01). CONCLUSIONS Clinical strains of MRSA, but not MSSA, that demonstrated an increased net charge also showed elevated resistance to LL-37, but not to hBD3.


Infection and Immunity | 2006

Actinobacillus actinomycetemcomitans Outer Membrane Protein 100 Triggers Innate Immunity and Production of β-Defensin and the 18-Kilodalton Cationic Antimicrobial Protein through the Fibronectin-Integrin Pathway in Human Gingival Epithelial Cells

Kazuhisa Ouhara; Hitoshi Komatsuzawa; Hideki Shiba; Yushi Uchida; Toshihisa Kawai; Koji Sayama; Koji Hashimoto; Martin A. Taubman; Hidemi Kurihara; Motoyuki Sugai

ABSTRACT Antimicrobial peptides, human β-defensin (hBD), and the 18-kDa cationic antimicrobial protein (CAP18) are components of innate immunity. These peptides have antimicrobial activity against bacteria, fungi, and viruses. Actinobacillus actinomycetemcomitans is a gram-negative facultative anaerobe implicated in the initiation of periodontitis. The innate immunity peptides have antibacterial activity against A. actinomycetemcomitans. We investigated the molecular mechanism of human gingival epithelial cells (HGEC) responding to exposure to A. actinomycetemcomitans. HGEC constitutively express hBD1 and inducibly express hBD2, hBD3, and CAP18 on exposure to A. actinomycetemcomitans. The level of expression varies among clinical isolates. In the signaling pathway for hBD2 induction by the bacterial contact, we demonstrate that the mitogen-activated protein (MAP) kinase and not the NF-κB transcription factor pathway is used. We found the outer membrane protein 100 (Omp100; identified by molecular mass) is the component inducing the hBD2 response. Omp100 binds to fibronectin, an extracellular matrix inducing hBD2 via the MAP kinase pathway. Anti-integrin α5β1, antifibronectin, genistein, and PP2 suppress the Omp100-induced expression of hBD2, suggesting that Src kinase is involved through integrin α5β1. The inflammatory cytokines, tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), IL-6 and IL-8, produced by HGEC on contact with A. actinomycetemcomitans also stimulate expression of hBD2. Further, neutralizing antibody against TNF-α or IL-8 partially inhibits the induction of hBD2 on bacterial contact. Therefore, we found that the induction of the antimicrobial peptides is mediated by a direct response principally through an Omp100-fibronectin interaction, and using secondary stimulation by inflammatory cytokines induced by the bacterial exposure.


Journal of Biological Chemistry | 2002

Phosphatidylinositol 3-kinase is a key regulator of early phase differentiation in keratinocytes.

Koji Sayama; Kenshi Yamasaki; Yasushi Hanakawa; Yuji Shirakata; Sho Tokumaru; Takeshi Ijuin; Tadaomi Takenawa; Koji Hashimoto

The survival and growth of epithelial cells depend on adhesion to the extracellular matrix. Because epidermal keratinocytes differentiate as they leave the basement membrane, an adhesion signal may regulate the initiation of differentiation. Phosphatidylinositol 3-kinase (PI3K) is a fundamental signaling molecule that regulates the adhesion signal. Transfection of a dominant negative form of PI3K into keratinocytes using an adenovirus vector resulted in significant morphological changes comparable to differentiation and the induction of differentiation markers, keratin (K) 1 and K10. In turn, transfection with the constitutively active form of PI3K almost completely abolished the induction of K1 and K10 by differentiation in suspension cultures using polyhydroxyethylmethacrylate-coated dishes. PI3K activity was lost in suspension culture, except by cells bearing the constitutively active form of PI3K. These data demonstrate that blockade of PI3K results in differentiation and that activation of PI3K prevents differentiation. Furthermore, expression of the dominant negative form of PI3K significantly inhibited keratinocyte adhesion to the extracellular matrix and reduced the surface expression of α6 and β1 integrins in suspension culture. Moreover, expression of the active form of PI3K restored the mRNA levels of adhesion molecules that were reduced in suspension culture, including α3, α6, and β1 integrins, BP180, and BP230. In conclusion, loss of PI3K activity results in keratinocytes leaving the basement membrane and the initiation of a “default” differentiation mechanism.

Collaboration


Dive into the Koji Sayama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge