Koji Takeda
Mercian Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koji Takeda.
Bioscience, Biotechnology, and Biochemistry | 2006
Tadashi Fujii; Tatsuya Narikawa; Futoshi Sumisa; Akira Arisawa; Koji Takeda; Junichi Kato
Our biotransformation using Escherichia coli expressing a cytochrome P450 (CYP) belonging to the CYP153A family from Acinetobacter sp. OC4 produced a great amount of 1-octanol (2,250 mg per liter) from n-octane after 24 h of incubation. This level of production is equivalent to the maximum level previously achieved in biotransformation experiments of alkanes. In addition, the initial production rate of 1-octanol was maintained throughout the entire incubation period. These results indicate that we have achieved the functional and stable expression of a CYP in E. coli for the first time. Further, our biotransformation system showed α,ω-diterminal oxidation activity of n-alkanes, and a large amount of 1,8-octanediol (722 mg per liter) was produced from 1-octanol after 24 h of incubation. This is the first report on the bioproduction of α,ω-alkanediols from n-alkanes or 1-alkanols.
Biochemical and Biophysical Research Communications | 2009
Yoshikazu Fujii; Hiroki Kabumoto; Kenji Nishimura; Tadashi Fujii; Satoshi Yanai; Koji Takeda; Noriko Tamura; Akira Arisawa; Tomohiro Tamura
Vitamin D(3) (VD(3)) is a fat-soluble prohormone that plays a crucial role in bone metabolism, immunity, and control of cell proliferation and cell differentiation in mammals. The actinomycete Pseudonocardia autotrophica is capable of bioconversion of VD(3) into its physiologically active forms, namely, 25(OH)VD(3) or 1alpha,25(OH)(2)VD(3). In this study, we isolated and characterized Vdh (vitamin D(3) hydroxylase), which hydroxylates VD(3) from P. autotrophica NBRC 12743. The vdh gene encodes a protein containing 403 amino acids with a molecular weight of 44,368Da. This hydroxylase was found to be homologous with the P450 belonging to CYP107 family. Vdh had the same ratio of the V(max) values for VD(3) 25-hydroxylation and 25(OH)VD(3) 1alpha-hydroxylation, while other enzymes showed preferential regio-specific hydroxylation on VD(3). We characterized a collection of Vdh mutants obtained by random mutagenesis and obtained a Vdh-K1 mutant by the combination of four amino acid substitutions. Vdh-K1 showed one-order higher VD(3) 25-hydroxylase activity than the wild-type enzyme. Biotransformation of VD(3) into 25(OH)VD(3) was successfully accomplished with a Vdh-expressed recombinant strain of actinobacterium Rhodococcus erythropolis. Vdh may be a useful enzyme for the production of physiologically active forms of VD(3) by a single cytochrome P450.
Bioscience, Biotechnology, and Biochemistry | 2004
Tadashi Fujii; Tatsuya Narikawa; Koji Takeda; Junichi Kato
Biotransformation using alkane-oxidizing bacteria or their alkane hydroxylase (AH) systems have been little studied at the molecular level. We have cloned and sequenced genes from Gordonia sp. TF6 encoding an AH system, alkB2 (alkane 1-monooxygenase), rubA3 (rubredoxin), rubA4 (rubredoxin), and rubB (rubredoxin reductase). When expressed in Escherichia coli, these genes allowed the construction of biotransformation systems for various alkanes. Normal alkanes with 5 to 13 carbons were good substrates for this biotransformation, and oxidized to their corresponding 1-alkanols. Surprisingly, cycloalkanes with 5 to 8 carbons were oxidized to their corresponding cycloalkanols as well. This is the first study to achieve biotransformation of alkanes using the E. coli expressing the minimum component genes of the AH system. Our biotransformation system has facilitated assays and analysis leading to improvement of AH systems, and has indicated a cycloalkane oxidation pathway in microorganisms for the first time.
Journal of Fermentation and Bioengineering | 1994
Koji Takeda; Toru Asou; Atushi Matsuda; Kiyoshi Kimura; Kazuhiko Okamura; Rokuro Okamoto; Joji Sasaki; Takashi Adachi; Sadafumi Omura
Abstract Amycolata autotrophica converts vitamin D3(VD3) to 1α,25-dihydroxyvitamin D3(1α,25(OH)2VD3) via 25-hydroxyvitamin D3(25(OH)VD3) by hydroxylation of VD3 at C-25 and C-1. In this microbial hydroxylation, it was found that cyclodextrin (CD) had the ability to enhance the hydroxylation of VD3. Addition of partially-methylated-β-cyclodextrin (PMCD) increased the productivity of 25(OH)VD3 about seven-fold compared to that without CD. Combined use of PMCD and γ-CD increased the production of 1α,25(OH)2VD3 in a tank fermentor about sixteen-fold compared to that without CD.
Steroids | 2006
Koji Takeda; Kaichiro Kominato; Atsuko Sugita; Yukiko Iwasaki; Mika Shimazaki; Masato Shimizu
Pseudonocardia autotrophica converted Vitamin D(3) to 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3). The hydroxylation of Vitamin D(3) with P. autotrophica was enhanced by the addition of cyclodextrin. In this microbial hydroxylation, a new Vitamin D(3) metabolite was observed in the reaction mixture of P. autotrophica and Vitamin D(3), and was isolated in a pure form by several steps of chromatography. The structure of the new metabolite was determined to be 2alpha,25-dihydroxyvitamin D(3) by UV, NMR and mass spectroscopic analyses. Biological evaluation of the new metabolite was conducted by means of several experiments.
Journal of Industrial Microbiology & Biotechnology | 2005
Irvan Faizal; Kana Dozen; Chang Soo Hong; Akio Kuroda; Noboru Takiguchi; Hisao Ohtake; Koji Takeda; Hiroshi Tsunekawa; Junichi Kato
Archive | 1991
Koji Takeda; Kiyoshi Kimura; Kazuhiko Okamura; Rokuro Okamoto; Joji Sasaki; Takashi Adachi; Sadafumi Omura
Archive | 1998
Koji Takeda; Tadashi Terasawa; Kazuyuki Dobashi; Takeo Yoshioka
Archive | 2000
Koji Takeda; Tadashi Terasawa; Kazuyuki Dobashi; Takeo Yoshioka
Archive | 1996
Kazuyuki Dobashi; Koji Takeda; Tadashi Terasawa; Takeo Yoshioka