Koji Yasutomo
University of Tokushima
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koji Yasutomo.
Nature Genetics | 2001
Koji Yasutomo; Takahiko Horiuchi; Shoji Kagami; Hiroshi Tsukamoto; Chinami Hashimura; Maki Urushihara; Yasuhiro Kuroda
Systemic lupus erythematosus (SLE) is a highly prevalent human autoimmune diseases that causes progressive glomerulonephritis, arthritis and an erythematoid rash. Mice deficient in deoxyribonuclease I (Dnase1) develop an SLE-like syndrome. Here we describe two patients with a heterozygous nonsense mutation in exon 2 of DNASE1, decreased DNASE1 activity and an extremely high immunoglobulin G titer against nucleosomal antigens. These data are consistent with the hypothesis that a direct connection exists between low activity of DNASE1 and progression of human SLE.
Nature Medicine | 2004
Hajime Hisaeda; Yoichi Maekawa; Daiji Iwakawa; Hiroko Okada; Kunisuke Himeno; Kenji Kishihara; Shin-ichi Tsukumo; Koji Yasutomo
Infection with malaria parasites frequently induces total immune suppression, which makes it difficult for the host to maintain long-lasting immunity. Here we show that depletion of CD4+CD25+ regulatory T cells (Treg) protects mice from death when infected with a lethal strain of Plasmodium yoelii, and that this protection is associated with an increased T-cell responsiveness against parasite-derived antigens. These results suggest that activation of Treg cells contributes to immune suppression during malaria infection, and helps malaria parasites to escape from host immune responses.
Immunity | 2003
Yoichi Maekawa; Shin-ichi Tsukumo; Shigeru Chiba; Hisamaru Hirai; Yuki Hayashi; Hiroko Okada; Kenji Kishihara; Koji Yasutomo
Following activation by antigen, naive CD4+ T helper precursor cells execute distinct genetic programs that result in their differentiation toward the type 1 or type 2 helper T cell (Th1 or Th2) phenotype. Although the differentiation and function of these Th subsets has been well studied, little is known about the contribution to these differentiation events of cell surface receptors other than those for soluble cytokines, such as IL-12 or IL-4. Here, we provide direct evidence that the Delta1 interaction with Notch3 on CD4+ T cells transduces signals, promoting development toward the Th1 phenotype. The positive role of Notch signaling in effector cell differentiation was dose dependent, with high levels of stimulation resulting in reduced T cell activation. Our data revealed a clear contribution of Notch pathways to Th1 versus Th2 fate decisions, while also providing insight into another mechanism for inhibition of CD4+ T cell activation.
Immunity | 1999
Bruno Lucas; Irena S̆tefanová; Koji Yasutomo; Nicole Dautigny; Ronald N. Germain
CD4+ CD8+ thymocyte differentiation requires TCR signaling induced by self-peptide/MHC ligands. Nevertheless, the resulting mature T cells are not activated by these self-complexes, whereas foreign ligands can be potent stimuli. Here, we show that the signaling properties of TCR change during thymocyte maturation, differentially affecting responses to related peptide/MHC molecule complexes and contributing to this discrimination. Weak agonists for CD4+ CD8+ thymocytes lose potency during development, accompanied by a change in TCR-associated phosphorylation from an agonist to a partial agonist/antagonist pattern. In contrast, sensitivity to strong agonists is maintained, along with full signaling. This yields a mature T cell pool highly responsive to foreign antigen while possessing a wide margin of safety against activation by self-ligands.
Journal of Clinical Investigation | 2011
Akiko Kitamura; Yoichi Maekawa; Hisanori Uehara; Keisuke Izumi; Izumi Kawachi; Masatoyo Nishizawa; Yasuko Toyoshima; Hitoshi Takahashi; Daron M. Standley; Keiji Tanaka; Jun Hamazaki; Shigeo Murata; Koji Obara; Itaru Toyoshima; Koji Yasutomo
Proteasomes are multisubunit proteases that play a critical role in maintaining cellular function through the selective degradation of ubiquitinated proteins. When 3 additional β subunits, expression of which is induced by IFN-γ, are substituted for their constitutively expressed counterparts, the structure is converted to an immunoproteasome. However, the underlying roles of immunoproteasomes in human diseases are poorly understood. Using exome analysis, we found a homozygous missense mutation (G197V) in immunoproteasome subunit, β type 8 (PSMB8), which encodes one of the β subunits induced by IFN-γ in patients from 2 consanguineous families. Patients bearing this mutation suffered from autoinflammatory responses that included recurrent fever and nodular erythema together with lipodystrophy. This mutation increased assembly intermediates of immunoproteasomes, resulting in decreased proteasome function and ubiquitin-coupled protein accumulation in the patients tissues. In the patients skin and B cells, IL-6 was highly expressed, and there was reduced expression of PSMB8. Downregulation of PSMB8 inhibited the differentiation of murine and human adipocytes in vitro, and injection of siRNA against Psmb8 in mouse skin reduced adipocyte tissue volume. These findings identify PSMB8 as an essential component and regulator not only of inflammation, but also of adipocyte differentiation, and indicate that immunoproteasomes have pleiotropic functions in maintaining the homeostasis of a variety of cell types.
Nature Immunology | 2000
Jeffrey R. Dorfman; Irena Stefanova; Koji Yasutomo; Ronald N. Germain
T cell receptor (TCR) signaling triggered by recognition of self-major histocompatibility complex (MHC) ligands has been proposed to maintain the viability of naïve T cells and to provoke their proliferation in T cell–deficient hosts. Consistent with this, the partially phosphorylated state of TCRζ chains in naïve CD4+ and CD8+ T cells in vivo was found to be actively maintained by TCR interactions with specific peptide-containing MHC molecules. TCR ligand-dependent phosphorylation of TCRζ was lost within one day of cell transfer into MHC-deficient hosts, yet the survival of transferred CD4+ lymphocytes was the same in recipients with or without MHC class II expression for one month. Thus, despite clear evidence for TCR signaling in nonactivated naïve T cells, these data argue against the concept that such signaling plays a predominant role in determining lymphocyte lifespan.
Annals of the Rheumatic Diseases | 2007
Kayoko Tao; Mutsuko Fujii; Shin Ichi Tsukumo; Yoichi Maekawa; Kenji Kishihara; Yasutaka Kimoto; Takahiko Horiuchi; Hajime Hisaeda; Shizuo Akira; Shoji Kagami; Koji Yasutomo
Background: Systemic lupus erythematosus (SLE) is characterised by dysregulation of autoreactive lymphocytes and antigen-presenting cells. Signalling through Toll-like receptor 9 (TLR9), a mediator of innate immune responses, has a role in activation of dendritic cells and autoreactive B cells. Objective: To investigate whether TLR9 polymorphisms are associated with an increased risk of SLE. Methods: DNA samples were obtained from 220 Japanese patients with SLE (with >4 American College of Rheumatology criteria for SLE) and 203 controls. The genetic variations of TLR9 were detected by PCR, followed by DNA sequencing. The promoter and enhancer activities of TLR9 were measured by luciferase reporter gene assay. The titres of anti-dsDNA antibodies in sera from control or TLR9-deficient mice were analysed by ELISA. Results: The G allele at position +1174 (located in intron 1 of TLR9) is closely associated with an increased risk of SLE (p = 0.029). Furthermore, patients with SLE tend to have C allele at position −1486 (p = 0.11). Both alleles down regulate TLR9 expression by reporter gene assay. TLR9-deficient mice under a C57BL/6 background possess higher titres of anti-dsDNA serum antibodies than control C57BL/6 mice. Conclusions: These results indicate that the presence of the G allele at position +1174 of TLR9 predisposes humans to an increased risk of SLE. It is speculated that TLR9 normally prevents the development of human SLE.
Nature Immunology | 2008
Yoichi Maekawa; Yoshiaki Minato; Chieko Ishifune; Takeshi Kurihara; Akiko Kitamura; Hidefumi Kojima; Hideo Yagita; Mamiko Sakata-Yanagimoto; Toshiki Saito; Ichiro Taniuchi; Shigeru Chiba; Saburo Sone; Koji Yasutomo
The acquisition of cytotoxic effector function by CD8+ T cells is crucial for the control of intracellular infection and tumor invasion. However, it remains unclear which signaling pathways are required for the differentiation of CD8+ cytotoxic T lymphocytes. We show here that Notch2-deficient T cells had impaired differentiation into cytotoxic T lymphocytes. In addition, dendritic cells with lower expression of the Notch ligand Delta-like 1 induced the differentiation of cytotoxic T lymphocytes less efficiently. We found that the intracellular domain of Notch2 interacted with a phosphorylated form of the transcription factor CREB1, and together these proteins bound the transcriptional coactivator p300 to form a complex on the promoter of the gene encoding granzyme B. Our results suggest that the highly regulated, dynamic control of T cell cytotoxicity depends on the integration of Notch2 and CREB1 signals.
Journal of Experimental Medicine | 2014
Akiko Kitamura; Yuki Sasaki; Takaya Abe; Hirotsugu Kano; Koji Yasutomo
Kitamura et al. identify NLRC4 as causing familial cold autoinflammatory syndrome using whole exome sequencing on a family with multiple affected family members. They identify a mutation in the NOD domain and show that the mutant protein increases Nlrc4 oligomerization and is associated with increased IL-1β. Transgenic mice with the same NLRC4 mutation are shown to develop a similar FCAS-like syndrome.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Muhammad Shamsul Alam; Yoichi Maekawa; Akiko Kitamura; Kenji Tanigaki; Takayuki Yoshimoto; Kenji Kishihara; Koji Yasutomo
CD4+ helper T (Th) cells differentiate toward distinct effector cell lineages characterized by their distinct cytokine expression patterns and functions. Multiple Th cell populations secrete IL-22 that contributes to both protective and pathological inflammatory responses. Although the differentiation of IL-22-producing Th cells is controlled by the aryl hydrocarbon receptor (AhR), little is known about the regulatory mechanisms inducing physiological stimulators for AhR. Here, we show that Notch signaling enhances IL-22 production by CD4+ T cells by a mechanism involving AhR stimulation. Notch-mediated stimulation of CD4+ T cells increased the production of IL-22 even in the absence of STAT3. CD4+ T cells from RBP-J-deficient mice had little ability to produce IL-22 through T cell receptor-mediated stimulation. RBP-J-deficient mice were highly susceptible to the detrimental immunopathology associated with ConA-induced hepatitis with little IL-22 production by CD4+ T cells. Exogenous IL-22 protected RBP-J-deficient mice from ConA-induced hepatitis. Notch signaling promoted production of endogenous stimulators for AhR, which further augmented IL-22 secretion. Our studies identify a Notch–AhR axis that regulates IL-22 expression and fine-tunes immune system control of inflammatory responses.