Kok Wai Cheah
Hong Kong Baptist University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kok Wai Cheah.
Nature Communications | 2013
Lingling Huang; Xianzhong Chen; Holger Mühlenbernd; Hao Zhang; Shumei Chen; Benfeng Bai; Qiaofeng Tan; Guofan Jin; Kok Wai Cheah; Cheng-Wei Qiu; Jensen Li; Shuang Zhang
Benefitting from the flexibility in engineering their optical response, metamaterials have been used to achieve control over the propagation of light to an unprecedented level, leading to highly unconventional and versatile optical functionalities compared with their natural counterparts. Recently, the emerging field of metasurfaces, which consist of a monolayer of photonic artificial atoms, has offered attractive functionalities for shaping wave fronts of light by introducing an abrupt interfacial phase discontinuity. Here we realize three-dimensional holography by using metasurfaces made of subwavelength metallic nanorods with spatially varying orientations. The phase discontinuity takes place when the helicity of incident circularly polarized light is reversed. As the phase can be continuously controlled in each subwavelength unit cell by the rod orientation, metasurfaces represent a new route towards high-resolution on-axis three-dimensional holograms with a wide field of view. In addition, the undesired effect of multiple diffraction orders usually accompanying holography is eliminated.
Nature Communications | 2015
Dandan Wen; Fuyong Yue; Guixin Li; Guoxing Zheng; Kinlong Chan; Shumei Chen; Ming Chen; King Fai Li; Polis Wing Han Wong; Kok Wai Cheah; Edwin Yue-Bun Pun; Shuang Zhang; Xianzhong Chen
Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.
Applied Physics Letters | 2004
Aleksandra B. Djurišić; Yu Hang Leung; Wallace C. H. Choy; Kok Wai Cheah; Wai Kin Chan
The properties of ZnO tetrapod and multipod structures were investigated using scanning electron microscopy, x-ray diffraction, photoluminescence (PL), and electron paramagnetic resonance (EPR) spectroscopy. While there is relationship between g=1.96 EPR and green PL in some of the samples, this is not the case for all the samples. Therefore, the commonly assumed transition between a singly charged oxygen vacancy and photoexcited hole [K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996)] does not explain the green emission in all ZnO samples. The green emission likely originates from surface defects.
Chemistry-an Asian Journal | 2009
Cheuk-Lam Ho; Qi Wang; Ching-Shan Lam; Wai-Yeung Wong; Dongge Ma; Lixiang Wang; Zhi-Qiang Gao; Chin-Hsin Chen; Kok Wai Cheah; Zhenyang Lin
The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro- or methyl-substituted 2-[3-(N-phenylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo-, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest-occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2-phenylpyridine ligands. Remarkably, the excited-state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red. Electrophosphorescent organic light-emitting diodes (OLEDs) with outstanding device performance can be fabricated based on these materials, which show a maximum current efficiency of approximately 43.4 cd A(-1), corresponding to an external quantum efficiency of approximately 12.9 % ph/el (photons per electron) and a power efficiency of approximately 33.4 Lm W(-1) for the best device. The present work provides a new avenue for the rational design of multifunctional iridium-carbazolyl electrophosphors, by synthetically tailoring the carbazolyl pyridine ring that can reveal a superior device performance coupled with good color-tuning versatility, suitable for multicolor-display technology.
New Journal of Chemistry | 2002
Wai-Kwok Wong; Hongze Liang; Wai-Yeung Wong; Zongwei Cai; King-Fai Li; Kok Wai Cheah
The reaction of the zinc(II) Schiff base complex ZnL [H2L=N,N′-bis(3-methoxysalicylidene)ethylene-1,2-diamine] with one equivalent of Ln(NO3)3·xH2O (Ln=Nd, Ho, Er or Yb) gives the neutral 3d-4f bi-metallic Schiff base complexes [Zn(NO3)(μ-L)Ln(NO3)2(H2O)], which in solution exhibit emission corresponding to the Ln(III) ions (Ln=Nd, Er and Yb) in the near-infrared region.
Nature Materials | 2015
Guixin Li; Shumei Chen; Nitipat Pholchai; Bernhard Reineke; Polis Wing Han Wong; Edwin Yue-Bun Pun; Kok Wai Cheah; Shuang Zhang
The capability of locally engineering the nonlinear optical properties of media is crucial in nonlinear optics. Although poling is the most widely employed technique for achieving locally controlled nonlinearity, it leads only to a binary nonlinear state, which is equivalent to a discrete phase change of π in the nonlinear polarizability. Here, inspired by the concept of spin-rotation coupling, we experimentally demonstrate nonlinear metasurfaces with homogeneous linear optical properties but spatially varying effective nonlinear polarizability with continuously controllable phase. The continuous phase control over the local nonlinearity is demonstrated for second and third harmonic generation by using nonlinear metasurfaces consisting of nanoantennas of C3 and C4 rotational symmetries, respectively. The continuous phase engineering of the effective nonlinear polarizability enables complete control over the propagation of harmonic generation signals. Therefore, this method seamlessly combines the generation and manipulation of harmonic waves, paving the way for highly compact nonlinear nanophotonic devices.
Applied Physics Letters | 2008
Y. Y. Xi; Y. F. Hsu; Aleksandra B. Djurišić; Annie Ng; Wai Kin Chan; Hoi Lam Tam; Kok Wai Cheah
Heterojunction NiO∕ZnO light emitting diodes have been fabricated using low temperature solution-based growth methods. While negligible light emission has been obtained for the as-grown NiO film, devices with annealed NiO film exhibit room-temperature electroluminescence (EL), which was attributed to the detrimental effects of nickel oxide hydroxide in as-grown NiO layers. The device performance can be further modified by insertion of the organic layers between NiO and ZnO and the EL spectra exhibited dependence on the bias voltage. For higher bias voltages, strong UV-violet emission peak can be obtained in spite of the dominance of defect emission in the photoluminescence spectra.
Organic Letters | 2010
Xin Jiang Feng; Po Lam Wu; Frédéric Bolze; Heidi W. C. Leung; King Fai Li; Nai Ki Mak; Daniel W. J. Kwong; Jean-François Nicoud; Kok Wai Cheah; Man Shing Wong
A series of cyanine fluorophores based on fused aromatics as an electron donor for DNA sensing and two-photon bioimaging were synthesized, among which the carbazole-based biscyanine exhibits high sensitivity and efficiency as a fluorescent light-up probe for dsDNA, which shows selective binding toward the AT-rich regions. The synergetic effect of the bischromophoric skeleton gives a several-fold enhancement in a two-photon absorption cross-section as well as a 25- to 100-fold enhancement in two-photon excited fluorescence upon dsDNA binding.
Inorganic Chemistry | 2009
Ga-Lai Law; Ka-Leung Wong; Hoi Lam Tam; Kok Wai Cheah; Wing-Tak Wong
A new direction for white organic light-emitting devices is shown, fabricated from a novel europium complex; this single component contains a double emission center of bluish-green and red, combined to a give a pure white emission (CIE x = 0.34 and y = 0.35).
Inorganic Chemistry | 2009
Chi-Kin Koo; Ka-Leung Wong; Cornelia Man; Yun Wah Lam; Leo K.‐Y. So; Hoi Lam Tam; Sai Wah Tsao; Kok Wai Cheah; Kai-Chung Lau; Yangyi Yang; Jin-Can Chen; Michael Hon-Wah Lam
The cyclometalated platinum(II) complex [Pt(L)Cl], where HL is a new cyclometalating ligand 2-phenyl-6-(1H-pyrazol-3-yl)pyridine containing C(phenyl), N(pyridyl), and N(pyrazolyl) donor moieties, was found to possess two-photon-induced luminescent properties. The two-photon-absorption cross section of the complex in N,N-dimethylformamide at room temperature was measured to be 20.8 GM. Upon two-photon excitation at 730 nm from a Ti:sapphire laser, bright-green emission was observed. Besides its two-photon-induced luminescent properties, [Pt(L)Cl] was able to be rapidly accumulated in live HeLa and NIH3T3 cells. The two-photon-induced luminescence of the complex was retained after live cell internalization and can be observed by two-photon confocal microscopy. Its bioaccumulation properties enabled time-lapse imaging of the internalization process of the dye into living cells. Cytotoxicity of [Pt(L)Cl] to both tested cell lines was low, according to MTT assays, even at loadings as high as 20 times the dose concentration for imaging for 6 h.