Koki Fujimori
Keio University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koki Fujimori.
Journal of Neuroinflammation | 2012
Junpei Takaki; Koki Fujimori; Marie Miura; Takeshi Suzuki; Yuko Sekino; Kaoru Sato
BackgroundIn the central nervous system, astrocytic L-glutamate (L-Glu) transporters maintain extracellular L-Glu below neurotoxic levels, but their function is impaired with neuroinflammation. Microglia become activated with inflammation; however, the correlation between activated microglia and the impairment of L-Glu transporters is unknown.MethodsWe used a mixed culture composed of astrocytes, microglia, and neurons. To quantify L-Glu transporter function, we measured the extracellular L-Glu that remained 30 min after an application of L-Glu to the medium (the starting concentration was 100 μM). We determined the optimal conditions of lipopolysaccharide (LPS) treatment to establish an inflammation model without cell death. We examined the predominant subtypes of L-Glu transporters and the changes in the expression levels of these transporters in this inflammation model. We then investigated the role of activated microglia in the changes in L-Glu transporter expression and the underlying mechanisms in this inflammation model.ResultsBecause LPS (10 ng/mL, 72 h) caused a significant increase in the levels of L-Glu remaining but did not affect cell viability, we adopted this condition for our inflammation model without cell death. GLAST was the predominant L-Glu transporter subtype, and its expression decreased in this inflammation model. As a result of their release of L-Glu, activated microglia were shown to be essential for the significant decrease in L-Glu uptake. The serial application of L-Glu caused a significant decrease in L-Glu uptake and GLAST expression in the astrocyte culture. The hemichannel inhibitor carbenoxolone (CBX) inhibited L-Glu release from activated microglia and ameliorated the decrease in GLAST expression in the inflammation model. In addition, the elevation of the astrocytic intracellular L-Glu itself caused the downregulation of GLAST.ConclusionsOur findings suggest that activated microglia trigger the elevation of extracellular L-Glu through their own release of L-Glu, and astrocyte L-Glu transporters are downregulated as a result of the elevation of astrocytic intracellular L-Glu levels, causing a further increase of extracellular L-Glu. Our data suggest the new hypothesis that activated microglia collude with astrocytes to cause the elevation of extracellular L-Glu in the early stages of neuroinflammation.
Stem cell reports | 2015
Kent Imaizumi; Takefumi Sone; Keiji Ibata; Koki Fujimori; Michisuke Yuzaki; Wado Akamatsu; Hideyuki Okano
Summary The CNS contains many diverse neuronal subtypes, and most neurological diseases target specific subtypes. However, the mechanism of neuronal subtype specificity of disease phenotypes remains elusive. Although in vitro disease models employing human pluripotent stem cells (PSCs) have great potential to clarify the association of neuronal subtypes with disease, it is currently difficult to compare various PSC-derived subtypes. This is due to the limited number of subtypes whose induction is established, and different cultivation protocols for each subtype. Here, we report a culture system to control the regional identity of PSC-derived neurons along the anteroposterior (A-P) and dorsoventral (D-V) axes. This system was successfully used to obtain various neuronal subtypes based on the same protocol. Furthermore, we reproduced subtype-specific phenotypes of amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) by comparing the obtained subtypes. Therefore, our culture system provides new opportunities for modeling neurological diseases with PSCs.
Stem cell reports | 2016
Naoki Ichiyanagi; Koki Fujimori; Masato Yano; Chikako Ishihara-Fujisaki; Takefumi Sone; Tetsuya Akiyama; Yohei Okada; Wado Akamatsu; Takuya Matsumoto; Mitsuru Ishikawa; Yoshinori Nishimoto; Yasuharu Ishihara; Tetsushi Sakuma; Takashi Yamamoto; Hitomi Tsuiji; Naoki Suzuki; Hitoshi Warita; Masashi Aoki; Hideyuki Okano
Summary Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC) from two familial ALS (FALS) patients with a missense mutation in the fused-in sarcoma (FUS) gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs) combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.
Stem cell reports | 2016
Takuya Matsumoto; Koki Fujimori; Tomoko Andoh-Noda; Takayuki Ando; Naoko Kuzumaki; Manabu Toyoshima; Hirobumi Tada; Kent Imaizumi; Mitsuru Ishikawa; Ryo Yamaguchi; Miho Isoda; Zhi Zhou; Shigeto Sato; Tetsuro Kobayashi; Manami Ohtaka; Ken Nishimura; Hiroshi Kurosawa; Takeo Yoshikawa; Takuya Takahashi; Mahito Nakanishi; Manabu Ohyama; Nobutaka Hattori; Wado Akamatsu; Hideyuki Okano
Summary Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinsons disease exhibited several Parkinsons disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases.
Molecular Brain | 2016
Koki Fujimori; Toshiki Tezuka; Hiroyuki Ishiura; Jun Mitsui; Koichiro Doi; Jun Yoshimura; Hirobumi Tada; Takuya Matsumoto; Miho Isoda; Ryota Hashimoto; Nubutaka Hattori; Takuya Takahashi; Shinichi Morishita; Shoji Tsuji; Wado Akamatsu; Hideyuki Okano
Patient-specific induced pluripotent stem cells (iPSCs) facilitate understanding of the etiology of diseases, discovery of new drugs and development of novel therapeutic interventions. A frequently used starting source of cells for generating iPSCs has been dermal fibroblasts (DFs) isolated from skin biopsies. However, there are also numerous repositories containing lymphoblastoid B-cell lines (LCLs) generated from a variety of patients. To date, this rich bioresource of LCLs has been underused for generating iPSCs, and its use would greatly expand the range of targeted diseases that could be studied by using patient-specific iPSCs. However, it remains unclear whether patient’s LCL-derived iPSCs (LiPSCs) can function as a disease model. Therefore, we generated Parkinson’s disease patient-specific LiPSCs and evaluated their utility as tools for modeling neurological diseases. We established iPSCs from two LCL clones, which were derived from a healthy donor and a patient carrying PARK2 mutations, by using existing non-integrating episomal protocols. Whole genome sequencing (WGS) and comparative genomic hybridization (CGH) analyses showed that the appearance of somatic variations in the genomes of the iPSCs did not vary substantially according to the original cell types (LCLs, T-cells and fibroblasts). Furthermore, LiPSCs could be differentiated into functional neurons by using the direct neurosphere conversion method (dNS method), and they showed several Parkinson’s disease phenotypes that were similar to those of DF-iPSCs. These data indicate that the global LCL repositories can be used as a resource for generating iPSCs and disease models. Thus, LCLs are the powerful tools for generating iPSCs and modeling neurological diseases.
Journal of Pharmacological Sciences | 2015
Koki Fujimori; Junpei Takaki; Yukari Shigemoto-Mogami; Yuko Sekino; Takeshi Suzuki; Kaoru Sato
The extracellular L-glutamate (L-Glu) concentration is elevated in neuroinflammation, thereby causing excitotoxicity. One of the mechanisms is down-regulation of astrocyte L-Glu transporters. Some antidepressants have anti-inflammatory effects. We therefore investigated effects of various antidepressants on the down-regulation of astrocyte L-Glu transporters in the in vitro neuroinflammation model. Among these antidepressants, only paroxetine was effective. We previously demonstrated that the down-regulation of astrocyte L-Glu transporters was caused by L-Glu released from activated microglia. We here clarified that only paroxetine inhibited L-Glu release from microglia. This is the novel action of paroxetine, which may bring advantages on the therapy of neuroinflammation.
Stem cell reports | 2017
Koki Fujimori; Takuya Matsumoto; Fumihiko Kisa; Nobutaka Hattori; Hideyuki Okano; Wado Akamatsu
Summary Human pluripotent stem cells (hPSCs) represent a potentially valuable cell source for applications in cell replacement therapy, drug development, and disease modeling. For all these uses, it is necessary to develop reproducible and robust protocols for differentiation into desired cell types. However, differentiation protocols remain unstable and inefficient, which makes minimizing the differentiation variance among hPSC lines and obtaining purified terminally differentiated cells extremely time consuming. Here, we report a simple treatment with three small molecules—SB431542, dorsomorphine, and CHIR99021—that enhanced hPSC differentiation into three germ layers with a chemically transitional embryoid-body-like state (CTraS). Induction of CTraS reduced the innate differentiation propensities of hPSCs (even unfavorably differentiated hPSCs) and shifted their differentiation into terminally differentiated cells, particularly neurons. In addition, CTraS induction accelerated in vitro pathological expression concurrently with neural maturation. Thus, CTraS can promote the latent potential of hPSCs for differentiation and potentially expand the utility and applicability of hPSCs.
eNeuro | 2018
Kent Imaizumi; Koki Fujimori; Seiji Ishii; Asako Otomo; Yasushi Hosoi; Hiroaki Miyajima; Hitoshi Warita; Masashi Aoki; Shinji Hadano; Wado Akamatsu; Hideyuki Okano
Abstract The cerebral cortex is subdivided into distinct areas that have particular functions. The rostrocaudal (R-C) gradient of fibroblast growth factor 8 (FGF8) signaling defines this areal identity during neural development. In this study, we recapitulated cortical R-C patterning in human pluripotent stem cell (PSC) cultures. Modulation of FGF8 signaling appropriately regulated the R-C markers, and the patterns of global gene expression resembled those of the corresponding areas of human fetal brains. Furthermore, we demonstrated the utility of this culture system in modeling the area-specific forebrain phenotypes [presumptive upper motor neuron (UMN) phenotypes] of amyotrophic lateral sclerosis (ALS). We anticipate that our culture system will contribute to studies of human neurodevelopment and neurological disease modeling.
Nature Medicine | 2018
Koki Fujimori; Mitsuru Ishikawa; Asako Otomo; Naoki Atsuta; Ryoichi Nakamura; Tetsuya Akiyama; Shinji Hadano; Masashi Aoki; Hideyuki Saya; Gen Sobue; Hideyuki Okano
Amyotrophic lateral sclerosis (ALS) is a heterogeneous motor neuron disease for which no effective treatment is available, despite decades of research into SOD1-mutant familial ALS (FALS). The majority of ALS patients have no familial history, making the modeling of sporadic ALS (SALS) essential to the development of ALS therapeutics. However, as mutations underlying ALS pathogenesis have not yet been identified, it remains difficult to establish useful models of SALS. Using induced pluripotent stem cell (iPSC) technology to generate stem and differentiated cells retaining the patients’ full genetic information, we have established a large number of in vitro cellular models of SALS. These models showed phenotypic differences in their pattern of neuronal degeneration, types of abnormal protein aggregates, cell death mechanisms, and onset and progression of these phenotypes in vitro among cases. We therefore developed a system for case clustering capable of subdividing these heterogeneous SALS models by their in vitro characteristics. We further evaluated multiple-phenotype rescue of these subclassified SALS models using agents selected from non-SOD1 FALS models, and identified ropinirole as a potential therapeutic candidate. Integration of the datasets acquired in this study permitted the visualization of molecular pathologies shared across a wide range of SALS models.iPSC-derived motor neurons from over 30 heterogeneous sporadic ALS cases exhibit pathologies correlated with clinical disease progression, are more similar to FUS/TDP-43 familial ALS than SOD1-ALS and are corrected by repurposing of ropinirole.
Fundamental Toxicological Sciences | 2014
Yukari Shigemoto-Mogami; Koki Fujimori; Yoshiaki Ikarashi; Akihiko Hirose; Yuko Sekino; Kaoru Sato