Kokkarachedu Varaprasad
Tshwane University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kokkarachedu Varaprasad.
Carbohydrate Polymers | 2013
Gownolla Malegowd Raghavendra; Tippabattini Jayaramudu; Kokkarachedu Varaprasad; Rotimi Sadiku; S. Sinha Ray; Konduru Mohana Raju
Abstract Natural carbohydrates (polysaccharides): gum acacia (GA) and gaur gum (GG) were employed in dilute solutions: 0.3%, 0.5% and 0.7% (w/v), as effective reductants for the green synthesis of silver nanoparticles (AgNPs) from AgNO3. The formed AgNPs were impregnated into cellulose fibers after confirming their formation by utilizing ultraviolet–visible (UV–vis) spectral studies, Fourier transforms infrared (FTIR) and transmission electron microscopy (TEM). The surface morphology of the developed cellulose–silver nanocomposite fibers (CSNCFs) were examined with scanning electron microscope-energy dispersive spectroscopy (SEM-EDS). The thermal stability and mechanical properties of the CSNCFs were found to be better than cellulose fibers alone. The antibacterial activity of the nanocomposites was studied by inhibition zone method against Escherichia coli, which suggested that the developed CSNCFs can function effectively as anti-microbial agents. Hence, the developed CSNCFs can effectively used for tissue scaffolding.
Carbohydrate Polymers | 2013
Tippabattini Jayaramudu; Gownolla Malegowd Raghavendra; Kokkarachedu Varaprasad; Rotimi Sadiku; Konduru Mohana Raju
The design and fabrication of novel biodegradable gold nanocomposites hydrogels were developed as antibacterial agent. Biodegradable gold nanocomposite hydrogels were developed by using acrylamide (AM) and wheat protein isolate (WPI). The gold nanoparticles were prepared as a gold colloid by reducing HAuCl(4)·XH(2)O with leaf extracts of Azadirachta indica (neem leaf) that formed hydrogel network. The characterization of developed biodegradable hydrogels were studied using fourier transforms infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The biodegradable gold nanoparticle composite hydrogels developed were tested for antibacterial properties. The results indicate that these biodegradable gold nanocomposite hydrogels can be used as potential candidates for antibacterial applications.
Carbohydrate Polymers | 2013
Tippabattini Jayaramudu; Gownolla Malegowd Raghavendra; Kokkarachedu Varaprasad; Rotimi Sadiku; Koduri Ramam; Konduru Mohana Raju
In this paper, we report the synthesis and characterization of Iota-Carrageenan based on a novel biodegradable silver nanocomposite hydrogels. The aim of study was to investigate whether these hydrogels have the potential to be used in bacterial inactivation applications. Biodegradable silver nanocomposite hydrogels were prepared by a green process using acrylamide (AM) with I-Carrageenan (IC). The silver nanoparticles were prepared as silver colloid by reducing AgNO3 with leaf extracts of Azadirachta indica (neem leaf) that (Ag(0)) formed the hydrogel network. The formation of biodegradable silver nanoparticles in the hydrogels was characterized using UV-vis spectroscopy, thermo gravimetrical analysis, X-ray diffractometry studies, scanning electron microscopy and transmission electron microscopy studies. In addition, swelling behavior and degradation properties were systematically investigated. Furthermore, the biodegradable silver nanoparticle composite hydrogels developed were tested for antibacterial activities. The antibacterial activity of the biodegradable silver nanocomposite hydrogels was studied by inhibition zone method against Bacillus and Escherichia coli, which suggested that the silver nanocomposite hydrogels developed were effective as potential candidates for antimicrobial applications. Therefore, the inorganic biodegradable hydrogels developed can be used effectively for biomedical application.
International Journal of Biological Macromolecules | 2015
B. A. Aderibigbe; Kokkarachedu Varaprasad; Emmanuel Rotimi Sadiku; S. Sinha Ray; Xavier Yangkou Mbianda; M.C. Fotsing; S. J. Owonubi; Stephen C. Agwuncha
Natural polymer hydrogels are useful for controlling release of drugs. In this study, hydrogels containing gum acacia were synthesized by free-radical polymerization of acrylamide with gum acacia. The effect of gum acacia in the hydrogels on the release mechanism of nitrogen-containing bisphosphonate (BP) was studied at pH 1.2 and 7.4. The hydrogels exhibited high swelling ratios at pH 7.4 and low swelling ratios at pH 1.2. The release study was performed using UV-Visible spectroscopy via complex formation with Fe(III) ions. At pH 1.2, the release profile was found to be anomalous while at pH 7.4, the release kinetic of BP was a perfect zero-order release mechanism. The hydrogels were found to be pH-sensitive and the release profiles of the BP were found to be influenced by the degree of crosslinking of the hydrogel network with gum acacia. The preliminary results suggest that these hydrogels are promising devices for controlled delivery of bisphosphonate to the gastrointestinal region.
International Journal of Biological Macromolecules | 2014
Kanikireddy Vimala; Kokkarachedu Varaprasad; Rotimi Sadiku; Koduri Ramam; Krishnan Kanny
The potential applications, in the biomedical fields, of curcumin loaded silver nanocomposite were studied by using bovine serum albumin (protein) and acrylamide. The design and development of silver nanoparticles with small size and adequate stability are very important, in addition to their applicability, particularly in bio-medicine. In this study, silver nanoparticles were prepared by chemical reduction method, employing sodium borohydride as the reducing agent for silver nanoparticles. The properties of the protein hydrogels formed were characterized via Fourier transform infrared spectroscopy and X-ray diffraction analyses. The size and its distribution, and formation of metal nanoparticles were confirmed by transmission electron microscopy indicating the diameter of the silver nanoparticles in the range of 3-8 nm. The thermal study of curcumin-silver nanocomposite hydrogels was determined by thermo-gravimetric analysis. In order to increase the antibacterial activity of theses inorganic nanomaterials, natural biological curcumin was incorporated into the protein hydrogel. The main emphasis in this investigation is to increase the antibacterial activity of the hydrogels by loading curcumin, for advanced medical application and as a model drug.
Carbohydrate Polymers | 2013
J. Jayaramudu; G. Siva Mohan Reddy; Kokkarachedu Varaprasad; Emmanuel Rotimi Sadiku; S. Sinha Ray; A. Varada Rajulu
Uniaxial cellulose fabric Sterculia urens reinforced poly (lactic acid) (PLA) matrix biocomposites were prepared by a two-roll mill. In order to assess the suitability of Sterculia fabric as reinforcement for PLA matrix, the PLA/Sterculia fabric biocomposites were prepared. Tensile parameters, such as maximum stress, Youngs modulus and elongation-at-break, were determined using the Universal Testing Machine. The effect of alkali treatment and silane-coupling agent on the tensile properties of PLA-based biocomposites was studied. The results of thermogravimetric analysis show that uniaxial treatment of the fabric can improve the degradation temperature of the biocomposites. Moreover, morphological studies by scanning electron microscopy confirmed that better adhesion between the uniaxial fabric and the matrix was achieved. It was established that standard PLA resins are suitable for the manufacture of S. urens uniaxial fabric reinforced biocomposites with excellent engineering properties, useful for food packaging.
Journal of Biomedical Materials Research Part A | 2014
Kokkarachedu Varaprasad; Rotimi Sadiku; Koduri Ramam; G. Venkata Subba Reddy; Konduru Mohana Raju
In this investigation, an ecofriendly method for the synthesis of silver nanoparticles (AgNPs) using biodegradable gelatin as a stabilizing agent is reported. Here, we prepared thermosensitive silver nanocomposite hydrogels composed of gelatin and N-isopropylacrylamide. In this green process AgNPs were formed from Ag(+) ions and reduced with leaf [Azadirachta indica (neem leaf)] extracts, resulting in a hydrogel network. The Ag(0) nanoparticles affect the hydrogel strength and improved the biological activity (inactivation effect of bacteria) of the biodegradable hydrogels. The resulted hydrogel structure, morphology, thermal, swelling behavior, degradation, and antibacterial properties were systematically investigated. The biodegradable thermosensitive silver nanocomposite hydrogels developed were tested for antibacterial activities. The results indicate that these biodegradable silver nanocomposite hydrogels are suitable potential candidates for antibacterial applications.
Biomaterials Science | 2014
Kokkarachedu Varaprasad; G. Siva Mohan Reddy; J. Jayaramudu; Rotimi Sadiku; Koduri Ramam; S. Sinha Ray
The present scientific research resulted in the development of novel microbial resistant inorganic nanocomposite hydrogels, which can be used as antibacterial agents. They are promising candidates for advanced antimicrobial applications in the field of biomedical science. Novel inorganic nanocomposite hydrogels were developed from Carbopol® 980 NF and acrylamide. Dual-metallic (Ag0-Au0) nanoparticles were prepared (via a green process) by the nucleation of silver and gold salts with mint leaf extract to form a hydrogel network. The Carbopol nanocomposite hydrogels contain (Ag0-Au0) nanoparticles ∼5 ± 3 nm in size, which was confirmed by transmission electron microscopy. The developed hydrogels were characterized using Fourier transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The pure and inorganic nanocomposite hydrogels developed were tested against Bacillus and E. coli, for their antibacterial properties. The results indicate that the inorganic nanocomposites show significantly greater antimicrobial activity than the pure hydrogels. Therefore, novel microbial resistant Carbopol nanocomposite hydrogels can be used as potential candidates for antibacterial applications.
Journal of Inorganic and Organometallic Polymers and Materials | 2013
P. Ranga Reddy; Kokkarachedu Varaprasad; Rotimi Sadiku; Koduri Ramam; G. Venkata Subba Reddy; K. Mohana Raju; N. Subbarami Reddy
In this investigation, silver nanocomposite hydrogels were developed by using acrylamide and biodegradable gelatin. Silver nanoparticles were generated throughout the hydrogel networks using in situ method by incorporating Ag+ ions and the subsequent treatment with sodium borohydride. The effect of gelatin on the swelling studies was investigated. The hydrogel synthesized silver nanocomposites were characterized by using Fourier transform infrared, UV–Visible spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron and transmission electron microscopy techniques. The biodegradable gelatin-based silver nanocomposite hydrogels were tested for antibacterial properties. The results indicate that these biodegradable silver nanocomposite hydrogels can be useful in medical applications, as antibacterial agents.
RSC Advances | 2014
Kokkarachedu Varaprasad; Koduri Ramam; G. Siva Mohan Reddy; Rotimi Sadiku
Multifunctional zinc oxide–bismuth ferrite and tin dioxide–bismuth ferrite have been synthesized using a double precipitation technique. The structural formation, chemical composition, morphology and thermal properties were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy with energy dispersive spectroscopy and transmission electron microscopy. Temperature-dependent magnetic behaviour of zinc oxide–bismuth ferrite and tin dioxide–bismuth ferrite were studied using a vibrating sample magnetometer in the range of 5 K to 300 K. The results indicate that zinc oxide–bismuth ferrite is a potential candidate for spintronics applications.