Komal Jhaveri
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Komal Jhaveri.
Biochimica et Biophysica Acta | 2012
Komal Jhaveri; Tony Taldone; Shanu Modi; Gabriela Chiosis
Hsp90 is an ATP dependent molecular chaperone protein which integrates multiple oncogenic pathways. As such, Hsp90 inhibition is a promising anti-cancer strategy. Several inhibitors that act on Hsp90 by binding to its N-terminal ATP pocket have entered clinical evaluation. Robust pre-clinical data suggested anti-tumor activity in multiple cancer types. Clinically, encouraging results have been demonstrated in melanoma, acute myeloid leukemia, castrate refractory prostate cancer, non-small cell lung carcinoma and multiple myeloma. In breast cancer, proof-of-concept was demonstrated by first generation Hsp90 inhibitors in combination with trastuzumab mainly in human epidermal growth factor receptor 2 (HER2)+metastatic breast cancer. There are a multitude of second generation Hsp90 inhibitors currently under investigation. To date, however, there is no FDA approved Hsp90 inhibitor nor standardized assay to ascertain Hsp90 inhibition. This review summarizes the current status of both first and second generation Hsp90 inhibitors based on their chemical classification and stage of clinical development. It also discusses the pharmacodynamic assays currently implemented in clinic as well as other novel strategies aimed at enhancing the effectiveness of Hsp90 inhibitors. Ultimately, these efforts will aid in maximizing the full potential of this class of agents. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Expert Opinion on Investigational Drugs | 2014
Komal Jhaveri; Stefan Ochiana; Mark Dunphy; John F. Gerecitano; Adriana D. Corben; Radu Ioan Peter; Yelena Y. Janjigian; Erica M. Gomes-DaGama; John Koren; Shanu Modi; Gabriela Chiosis
Introduction: Heat shock protein 90 (HSP90) serves as a critical facilitator for oncogene addiction. There has been augmenting enthusiasm in pursuing HSP90 as an anticancer strategy. In fact, since the initial serendipitous discovery that geldanamycin (GM) inhibits HSP90, the field has rapidly moved from proof-of-concept clinical studies with GM derivatives to novel second-generation inhibitors. Areas covered: The authors highlight the current status of the second-generation HSP90 inhibitors in clinical development. Herein, the authors note the lessons learned from the completed clinical trials of first- and second-generation inhibitors and describe various assays attempting to serve for a more rational implementation of these agents to cancer treatment. Finally, the authors discuss the future perspectives for this promising class of agents. Expert opinion: The knowledge gained thus far provides perhaps only a glimpse at the potential of HSP90 for which there is still much work to be done. Lessons from the clinical trials suggest that HSP90 therapy would advance at a faster pace if patient selection and tumor pharmacokinetics of these drugs were better understood and applied to their clinical development. It is also evident that combining HSP90 inhibitors with other potent anticancer therapies holds great promise not only due to synergistic antitumor activity but also due to the potential of prolonging or preventing the development of drug resistance.
British Journal of Cancer | 2014
J C Singh; Komal Jhaveri; Francisco J. Esteva
Effective targeting of the human epidermal growth factor receptor 2 (HER2) has changed the natural history of HER2 overexpressing (HER2+) metastatic breast cancer. The initial success of trastuzumab improving time to progression and survival rates led to the clinical development of pertuzumab, ado-trastuzumab emtansine and lapatinib. These biologic therapies represent significant additions to the breast medical oncology armamentarium. However, drug resistance ultimately develops and most tumours progress within 1 year. Ongoing studies are evaluating novel therapeutic approaches to overcome primary and secondary drug resistance in tumours, including inhibition of PI3K/TOR, HSP90, IGF-IR and angiogenesis. Mounting experimental data support the clinical testing of immune checkpoint modulators and vaccines. The central nervous system remains a sanctuary site for HER2+ breast cancer and further studies are needed for the prevention and treatment of brain metastases in this population. Despite efforts to identify predictors of preferential benefit from HER2-targeted therapies (e.g., truncated HER2, PTEN loss and SRC activation), HER2 protein overexpression and/or gene amplification remains the most important predictive factor of response to HER2-targeted therapies. In this article, we review the optimal sequence of HER2-targeted therapies and describe ongoing efforts to improve the outcome of HER2+ advanced breast cancer through rational drug development.
Advances in pharmacology (San Diego) | 2012
Komal Jhaveri; Shanu Modi
Since the initial discovery of heat shock protein 90 (HSP90) as a target for anticancer therapy, tremendous progress has been made in developing a multitude of potent first- and second-generation HSP90 inhibitors. Promising activity has been reported with 17-AAG in combination with trastuzumab in HER2 positive breast cancer refractory to trastuzumab therapy and more recently in ALK-mutated lung cancers. However, the full potential of this class of agents is yet to be realized. This review not only provides an up-to-date overview of the clinical development of HSP90 inhibitors and their companion biomarker assays but also provides insight into the less-understood role of HSP90 in tumor evolution and drug resistance. A better understanding of these important concepts will facilitate the optimal and expedient development of this class of agents, ultimately fulfilling their promise as potent anticancer therapeutics and leading to the regulatory approval of the first-in-class HSP90 inhibitor.
Clinical Cancer Research | 2012
Komal Jhaveri; Kathy D. Miller; Lee S. Rosen; Bryan P. Schneider; Linnea Chap; Alison L. Hannah; Ziyang Zhong; Weining Ma; Clifford A. Hudis; Shanu Modi
Purpose: We conducted a phase I dose-escalation study to define the maximum tolerated dose (MTD), pharmacokinetics (PK), and pharmacodynamics of alvespimycin (17-DMAG), a heat shock protein 90 (Hsp90) inhibitor, given in combination with trastuzumab. Experimental Design: Patients were treated with trastuzumab followed by intravenous alvespimycin on a weekly schedule. Hsp90 client proteins were measured at baseline and serially in peripheral blood lymphocytes (PBL) during cycle 1. Patients with advanced solid tumors progressing on standard therapy were eligible. Results: Twenty-eight patients (25, breast; 3, ovarian) were enrolled onto three dose cohorts: 60 (n = 9), 80 (n = 13), and 100 mg/m2 (n = 6). Dose-limiting toxicities (DLT) were: grade III left ventricular systolic dysfunction presenting as congestive heart failure in 1 patient (100 mg/m2), and reversible grade III keratitis in two patients (80 mg/m2). Drug-related grade III toxicity included one episode each of fatigue, diarrhea, myalgia, and back pain. Common mild to moderate toxicities included diarrhea, fatigue, myalgia, arthralgia, nausea, blurry vision, headache, back pain, and dry eyes. There was one partial response and seven cases of stable disease (range, 4–10 months), all in HER2+ MBC. In addition, an ovarian cancer patient had complete resolution of ascites and pleural effusion that lasted 24.8 months. There was no change in PK upon weekly dosing. Hsp70 effect continued to increase across four weeks and was most pronounced at 80 and 100 mg/m2. Conclusion: The combination of alvespimycin and trastuzumab is safe and tolerable at MTD. Antitumor activity was seen in patients with refractory HER2+ MBC and ovarian cancer. The recommended dose of alvespimycin for further study in this combination is 80 mg/m2 weekly. Clin Cancer Res; 18(18); 5090–8. ©2012 AACR.
Cancer | 2012
Patrick G. Morris; Gary A. Ulaner; Anne Eaton; Maurizio Fazio; Komal Jhaveri; Sujata Patil; Laura Evangelista; Joseph Y. Park; Cristian Serna-Tamayo; Jane Howard; Steven M. Larson; Clifford A. Hudis; Heather L. McArthur; Maxine S. Jochelson
In this retrospective, single‐institution study, the authors examine the maximum standardized uptake value (SUVmax) on positron emission tomography/computed tomography (PET/CT) images as a prognostic variable in patients with newly diagnosed metastatic breast cancer (MBC).
American Journal of Roentgenology | 2016
Andrew B. Rosenkrantz; Kent Friedman; Hersh Chandarana; Amy N. Melsaether; Linda Moy; Yu-Shin Ding; Komal Jhaveri; Luis S. Beltran; Rajan Jain
OBJECTIVE This review article explores recent advancements in PET/MRI for clinical oncologic imaging. CONCLUSION Radiologists should understand the technical considerations that have made PET/MRI feasible within clinical workflows, the role of PET tracers for imaging various molecular targets in oncology, and advantages of hybrid PET/MRI compared with PET/CT. To facilitate this understanding, we discuss clinical examples (including gliomas, breast cancer, bone metastases, prostate cancer, bladder cancer, gynecologic malignancy, and lymphoma) as well as future directions, challenges, and areas for continued technical optimization for PET/MRI.
Radiology | 2016
Amy N. Melsaether; Roy A. Raad; Akshat C. Pujara; Fabio Ponzo; Kristine Pysarenko; Komal Jhaveri; James S. Babb; Eric E. Sigmund; Sungheon Kim; Linda Moy
Purpose To compare fluorine 18 ((18)F) fluorodeoxyglucose (FDG) combined positron emission tomography (PET) and magnetic resonance (MR) imaging with (18)F FDG combined PET and computed tomography (CT) in terms of organ-specific metastatic lesion detection and radiation dose in patients with breast cancer. Materials and Methods From July 2012 to October 2013, this institutional review board-approved HIPAA-compliant prospective study included 51 patients with breast cancer (50 women; mean age, 56 years; range, 32-76 years; one man; aged 70 years) who completed PET/MR imaging with diffusion-weighted and contrast material-enhanced sequences after unenhanced PET/CT. Written informed consent for study participation was obtained. Two independent readers for each modality recorded site and number of lesions. Imaging and clinical follow-up, with consensus in two cases, served as the reference standard. Results There were 242 distant metastatic lesions in 30 patients, 18 breast cancers in 17 patients, and 19 positive axillary nodes in eight patients. On a per-patient basis, PET/MR imaging with diffusion-weighted and contrast-enhanced sequences depicted distant (30 of 30 [100%] for readers 1 and 2) and axillary (eight of eight [100%] for reader 1, seven of eight [88%] for reader 2) metastatic disease at rates similar to those of unenhanced PET/CT (distant metastatic disease: 28 of 29 [96%] for readers 3 and 4, P = .50; axillary metastatic disease: seven of eight [88%] for readers 3 and 4, P > .99) and outperformed PET/CT in the detection of breast cancer (17 of 17 [100%] for readers 1 and 2 vs 11 of 17 [65%] for reader 3 and 10 of 17 [59%] for reader 4; P < .001). PET/MR imaging showed increased sensitivity for liver (40 of 40 [100%] for reader 1 and 32 of 40 [80%] for reader 2 vs 30 of 40 [75%] for reader 3 and 28 of 40 [70%] for reader 4; P < .001) and bone (105 of 107 [98%] for reader 1 and 102 of 107 [95%] for reader 2 vs 106 of 107 [99%] for reader 3 and 93 of 107 [87%] for reader 4; P = .012) metastases and revealed brain metastases in five of 51 (10%) patients. PET/CT trended toward increased sensitivity for lung metastases (20 of 23 [87%] for reader 1 and 17 of 23 [74%] for reader 2 vs 23 of 23 [100%] for reader 3 and 22 of 23 [96%] for reader 4; P = .065). Dose reduction averaged 50% (P < .001). Conclusion In patients with breast cancer, PET/MR imaging may yield better sensitivity for liver and possibly bone metastases but not for pulmonary metastases, as compared with that attained with PET/CT, at about half the radiation dose. (©) RSNA, 2016 Online supplemental material is available for this article.
Cancer Medicine | 2013
Gary A. Ulaner; Anne Eaton; Patrick G. Morris; Joshua Lilienstein; Komal Jhaveri; Sujata Patil; Maurizio Fazio; Steven M. Larson; Clifford A. Hudis; Maxine S. Jochelson
The aim of this study was to determine the prognostic value of quantitative fluorodeoxyglucose (FDG) measurements (maximum standardized uptake value [SUVmax], metabolic tumor volume [MTV], and total lesion glycolysis [TLG]) in patients with newly diagnosed metastatic breast cancer (MBC). An IRB‐approved retrospective review was performed of patients who underwent FDG positron emission tomography (PET)/computed tomography (CT) from 1/02 to 12/08 within 60 days of diagnosis MBC. Patients with FDG‐avid lesions without receiving chemotherapy in the prior 30 days were included. Target lesions in bone, lymph node (LN), liver, and lung were analyzed for SUVmax, MTV, and TLG. Medical records were reviewed for patient characteristics and overall survival (OS). Cox regression was used to test associations between quantitative FDG measurements and OS. A total of 253 patients were identified with disease in bone (n = 150), LN (n = 162), liver (n = 48), and lung (n = 66) at the time of metastatic diagnosis. Higher SUVmax tertile was associated with worse OS in bone metastases (highest vs. lowest tertile hazard ratio [HR] = 3.1, P < 0.01), but not in LN, liver or lung (all P > 0.1). Higher MTV tertile was associated with worse OS in LN (HR = 2.4, P < 0.01) and liver (HR = 3.0, P = 0.02) metastases, but not in bone (P = 0.22) or lung (P = 0.14). Higher TLG tertile was associated with worse OS in bone (HR = 2.2, P = 0.02), LN (HR = 2.3, P < 0.01), and liver (HR = 4.9, P < 0.01) metastases, but not in lung (P = 0.19). We conclude measures of FDG avidity are prognostic biomarkers in newly diagnosed MBC. SUVmax and TLG were both predictors of survival in breast cancer patients with bone metastases. TLG may be a more informative biomarker of OS than SUVmax for patients with LN and liver metastases.
OncoTargets and Therapy | 2015
Komal Jhaveri; Shanu Modi
Under stressful conditions, the heat shock protein 90 (HSP90) molecular chaperone protects cellular proteins (client proteins) from degradation via the ubiquitin-proteasome pathway. HSP90 expression is upregulated in cancers, and this contributes to the malignant phenotype of increased proliferation and decreased apoptosis and maintenance of metastatic potential via conservation of its client proteins, including human epidermal growth factor receptor 2, anaplastic lymphoma kinase, androgen receptor, estrogen receptor, Akt, Raf-1, cell cycle proteins, and B-cell lymphoma 2 among others. Hence, inhibition of HSP90 leads to the simultaneous degradation of its many clients, thereby disrupting multiple oncogenic signaling cascades. This has sparked tremendous interest in the development of HSP90 inhibitors as an innovative anticancer strategy. Based on the wealth of compelling data from preclinical studies, a number of HSP90 inhibitors have entered into clinical testing. However, despite enormous promise and anticancer activity reported to date, none of the HSP90 inhibitors in development has been approved for cancer therapy, and the full potential of this class of agents is yet to be realized. This article provides a review on ganetespib, a small molecule HSP90 inhibitor that is currently under evaluation in a broad range of cancer types in combination with other therapeutic agents with the hope of further enhancing its efficacy and overcoming drug resistance. Based on our current understanding of the complex HSP90 machinery combined with the emerging data from these key clinical trials, ganetespib has the potential to be the first-in-class HSP90 inhibitor to be approved as a new anticancer therapy.