Komal Raina
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Komal Raina.
Clinical Cancer Research | 2008
Rana P. Singh; Komal Raina; Girish Sharma; Rajesh Agarwal
Purpose: The chronic nature of prostate cancer growth and progression leading to metastasis provides a large window for intervention. Herein, for the first time, we investigated the effect and associated mechanisms of silibinin phosphatidylcholine (silybin-phytosome) on established prostate tumors in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Experimental Design: Twenty-week-old TRAMP male mice having palpable prostate tumor were fed with control or 0.5% and 1%, w/w, silybin-phytosome diets for 11 weeks and then sacrificed. Results: Dietary silibinin inhibited the growth of prostate tumors (up to 60%, P < 0.001) and suppressed tumor progression from prostatic intraepithelial neoplasia to differentiated adenocarcinoma and poorly differentiated adenocarcinoma, with a complete absence of poorly differentiated adenocarcinoma at higher doses. It also inhibited the incidence of tumor invasion of seminal vesicle (up to 81%, P < 0.001) with complete absence of distant metastasis. Silibinin moderately inhibited tumor cell proliferation and induced apoptosis, but strongly suppressed tumor microvessel density (up to 60%, P < 0.001), vascular endothelial growth factor, and vascular endothelial growth factor receptor-2 expression. Antibody array analysis of plasma showed a decrease in the circulatory levels of vascular endothelial growth factor and basic fibroblast growth factor. Decreased levels of matrix metalloproteinases (MMP), snail-1, and vimentin, and an increased level of E-cadherin were also observed, indicating the anti–epithelial-mesenchymal transition effect of silibinin in tumors. Conclusions: Overall, silibinin treatment of TRAMP mice bearing prostate tumor inhibited tumor growth, progression, local invasion, and distant metastasis involving suppression of tumor angiogenesis and epithelial-mesenchymal transition. These findings would have greater relevance for the ongoing phase II clinical trial with silibinin-phytosome in prostate cancer patients.
Cancer Research | 2007
Komal Raina; Rana P. Singh; Rajesh Agarwal; Chapla Agarwal
Prostate cancer chemoprevention is an alternative and potential strategy to control this malignancy. Herein, we evaluated the chemopreventive efficacy of grape seed extract (GSE) against prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice where animals were fed with GSE by oral gavage at 200 mg/kg body weight dose during 4 to 28 weeks of age. Our results showed a significant reduction (46%, P < 0.01) in the weight of genitourinary tract organs in the GSE-fed mice. The GSE-fed group of mice had a higher incidence of prostatic intraepithelial neoplasia but showed strong reduction in the incidence of adenocarcinoma compared with mice in control group. Prostate tissue from the GSE group showed approximately 50% (P < 0.001) decrease in proliferating cell nuclear antigen (PCNA)-positive cells and 64% (P < 0.01) reduction in total PCNA protein level compared with the control group; however, GSE increased apoptotic cells by 8-fold. Furthermore, GSE strongly decreased the protein levels of cyclin B1, cyclin A, and cyclin E by 84% (P < 0.05), 96% (P < 0.05), and 89% (P < 0.001), respectively. The protein expression of cyclin-dependent kinases 2 and 6 and Cdc2 was also decreased by more than 90% (P < 0.05) in the prostate from the GSE-fed group. Together, for the first time, we identified that oral GSE inhibits prostate cancer growth and progression in TRAMP mice, which could be mediated via a strong suppression of cell cycle progression and cell proliferation and an increase in apoptosis.
Molecular Cancer Therapeutics | 2008
Komal Raina; Subapriya Rajamanickam; Gagan Deep; Meenakshi Singh; Rajesh Agarwal; Chapla Agarwal
Our recent studies have identified gallic acid as one of the major constituents of grape seed extract showing strong in vitro anticancer efficacy against human prostate cancer cells. Herein, for the first time, we established the in vivo chemopreventive efficacy of gallic acid against prostate cancer by evaluating its activity against prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. At 4 weeks of age, male TRAMP mice were fed with drinking water supplemented with 0.3% and 1% (w/v) gallic acid until 24 weeks of age. Positive control group was fed with regular drinking water for the same period. Our results showed that gallic acid–fed groups had a higher incidence of differentiated lower-grade prostatic tumors at the expense of strong decrease (∼60%; P < 0.01) in poorly differentiated tumors. Immunohistochemical analysis of prostate tissue showed a decrease in proliferative index by 36% to 41% (P < 0.05) in 0.3% to 1% gallic acid–fed groups, with an increase in the apoptotic cells by 3-fold (P < 0.05). Further, both doses of gallic acid completely diminished the expression of Cdc2 in the prostatic tissue together with strong decrease in the expression of Cdk2, Cdk4, and Cdk6. The protein levels of cyclin B1 and E were also decreased by gallic acid feeding. Together, for the first time, we identified that oral gallic acid feeding inhibits prostate cancer growth and progression to advanced-stage adenocarcinoma in TRAMP mice via a strong suppression of cell cycle progression and cell proliferation and an increase in apoptosis. [Mol Cancer Ther 2008;7(5):1258–67]
Cancer Prevention Research | 2009
Alpna Tyagi; Rana P. Singh; Kumaraguruparan Ramasamy; Komal Raina; Elizabeth F. Redente; Lori D. Dwyer-Nield; Richard A. Radcliffe; Alvin M. Malkinson; Rajesh Agarwal
The latency period for lung tumor progression offers a window of opportunity for therapeutic intervention. Herein, we studied the effect of oral silibinin (742 mg/kg body weight, 5 d/wk for 10 weeks) on the growth and progression of established lung adenocarcinomas in A/J mice. Silibinin strongly decreased both tumor number and tumor size, an antitumor effect that correlates with reduced antiangiogenic activity. Silibinin reduced microvessel size (50%, P < 0.01) with no change in the number of tumor microvessels and reduced (by 30%, P < 0.05) the formation of nestin-positive microvessels in tumors. Analysis of several proteins involved in new blood vessel formation showed that silibinin decreased the tumor expression of interleukin-13 (47%) and tumor necrosis factor-α (47%), and increased tissue inhibitor of metalloproteinase-1 (2-fold) and tissue inhibitor of metalloproteinase-2 (7-fold) expression, without significant changes in vascular endothelial growth factor levels. Hypoxia- inducible factor-1α expression and nuclear localization were also decreased by silibinin treatment. Cytokines secreted by tumor cells and tumor-associated macrophages regulate angiogenesis by activating nuclear factor-κB (NF-κB) and signal transducers and activators of transcription (STAT). Silibinin decreased the phosphorylation of p65NF-κB (ser276, 38%; P < 0.01) and STAT-3 (ser727, 16%; P < 0.01) in tumor cells and decreased the lung macrophage population. Angiopoietin-2 (Ang-2) and Ang-receptor tyrosine kinase (Tie-2) expression were increased by silibinin. Therapeutic efficacy of silibinin in lung tumor growth inhibition and regression by antiangiogenic mechanisms seem to be mediated by decreased tumor-associated macrophages and cytokines, inhibition of hypoxia-inducible factor-1α, NF-κB, and STAT-3 activation, and up-regulation of the angiogenic inhibitors, Ang-2 and Tie-2.
Clinical Cancer Research | 2009
Rana P. Singh; Komal Raina; Gagan Deep; Daniel Chan; Rajesh Agarwal
Purpose: Silibinin is currently under phase II clinical trial in prostate cancer patients; however, its antitumor effects and mechanisms are not completely understood. Herein, we studied the efficacy and associated mechanisms of silibinin against orthotopically growing advanced human prostate carcinoma PC-3 tumors. Experimental Design: Athymic male mice were orthotopically implanted with PC-3 cells in prostate and 1 week later after surgical recovery were gavaged daily with silibinin (100 mg/kg body weight) for 7 weeks. Results: Silibinin treatment reduced the lower urogenital weight (including tumor, prostate, and seminal vesicle) by 40% (P < 0.05) without any toxicity in mice. Silibinin decreased proliferating cell nuclear antigen expression and proliferating cells (P < 0.001) but increased cleaved caspase-3-positive cells (P < 0.01) and apoptotic cells (P < 0.001) and suppressed tumor microvessel density (P < 0.001) and vascular endothelial growth factor expression (P = 0.02). Decreased levels of cyclin-dependent kinases 2, 4, and 6, CDC2, and cyclins D1, D3, E, and A were observed, indicating an inhibitory effect of silibinin on cell cycle progression. Silibinin showed a tremendous increase in extracellular signal-regulated kinase 1/2 phosphorylation but decreased c-Jun NH2-terminal kinase 1/2 and p38 mitogen-activated protein kinase phosphorylation. A moderate decrease in phosphorylated and total levels of Akt was also noted. A marked inhibitory effect of silibinin on signal transducers and activators of transcription (STAT) 1 (Tyr701), STAT1 (Ser727), STAT3 (Tyr705), STAT3 (Ser727), and STAT5 (Tyr794) phosphorylation together with a decrease in their total levels was also observed. Conclusions: These findings provide evidence for antitumor efficacy of silibinin against orthotopically growing prostate tumor in mice with multitargeted mechanistic insights and support its clinical investigation in prostate cancer.
Advances in Nutrition | 2012
Angela J. Henderson; Cadie A. Ollila; Ajay Kumar; Erica C. Borresen; Komal Raina; Rajesh Agarwal; Elizabeth P. Ryan
Emerging evidence suggests that dietary rice bran may exert beneficial effects against several types of cancer, such as breast, lung, liver, and colorectal cancer. The chemopreventive potential has been related to the bioactive phytochemicals present in the bran portion of the rice such as ferulic acid, tricin, β-sitosterol, γ-oryzanol, tocotrienols/tocopherols, and phytic acid. Studies have shown that the anticancer effects of the rice bran-derived bioactive components are mediated through their ability to induce apoptosis, inhibit cell proliferation, and alter cell cycle progression in malignant cells. Rice bran bioactive components protect against tissue damage through the scavenging of free radicals and the blocking of chronic inflammatory responses. Rice bran phytochemicals have also been shown to activate anticancer immune responses as well as affecting the colonic tumor microenvironment in favor of enhanced colorectal cancer chemoprevention. This is accomplished through the modulation of gut microflora communities and the regulation of carcinogen-metabolizing enzymes. In addition, the low cost of rice production and the accessibility of rice bran make it an appealing candidate for global dietary chemoprevention. Therefore, the establishment of dietary rice bran as a practical food-derived chemopreventive agent has the potential to have a significant impact on cancer prevention for the global population.
Cancer Research | 2007
Komal Raina; Marie-José Blouin; Rana P. Singh; Noreen Majeed; Gagan Deep; Leyon Varghese; L. Michael Glode; Norman M. Greenberg; David Hwang; Pinchas Cohen; Michael Pollak; Rajesh Agarwal
Herein, for the first time, we evaluated the chemopreventive efficacy of dietary silibinin against prostate cancer (PCa) growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice from two different genetic backgrounds [C57BL/6 (TRAMP) x FVB; C57BL/6 (TRAMP) x C57BL/6]. At 4 weeks of age, mice were fed control or 0.1% to 1% silibinin-supplemented diets until 23 to 24 weeks of age. Silibinin-fed groups had a lower tumor grade and higher incidence of prostatic intraepithelial neoplasia (PIN) at the expense of a strong decrease in adenocarcinoma incidence. Prostate tissue showed a 47% (P < 0.001) decrease in proliferating cell nuclear antigen (PCNA)-positive cells and an approximately 7-fold (P < 0.001) increase in apoptotic cells at the highest silibinin dose. As potential mechanisms of silibinin efficacy, an approximately 50% (P < 0.05) decrease in insulin-like growth factor (IGF) receptor type I beta and an approximately 13-fold (P < 0.001) increase in IGF-binding protein 3 (IGFBP-3) protein levels were also observed. These changes were specific to tumors as they were not reflected in circulating IGF-IGFBP-3 system. Additionally, silibinin decreased protein expression of cyclin-dependent kinases (Cdk) by more than 90% (P < 0.001) with a concomitant increase in Cdk inhibitors, Cip1/p21 and Kip1/p27 (P < 0.05, for both). A dose-dependent decrease was also observed in cyclin B1, cyclin E, and cyclin A protein levels by silibinin. Together, these findings suggest that oral silibinin blocks PCa growth and progression at PIN stage in TRAMP mice via modulation of tumor IGF-IGFBP-3 axis and cell cycle regulation, and therefore it has practical and translational potential in suppressing growth and neoplastic conversion of PIN to PCa in humans.
Molecular Cancer Therapeutics | 2007
Anil K. Tyagi; Komal Raina; Rana P. Singh; Mallikarjuna Gu; Chapla Agarwal; Gail Singer Harrison; L. M. Glode; Rajesh Agarwal
Effective strategies are lacking for the management of urinary bladder cancer for which smoking is a potential risk factor. Herein, we evaluated chemoprevention of urinary bladder cancer by natural chemopreventive agents, silymarin and silibinin, in a preclinical animal (ICR mouse) model of bladder cancer induced by tobacco smoke carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (OH-BBN). Mice were fed p.o. with saline or OH-BBN (0.05%, w/v) in drinking water for 6 weeks or with silymarin or silibinin (200 mg/kg body weight for both) starting 1 week before OH-BBN exposure for 51 weeks. Silymarin and silibinin strongly arrested OH-BBN–induced tumor progression at the stage of mucosal dysplasia with a striking reduction in papillary nodular dysplasia as well as invasive carcinoma. Some silymarin- or silibinin-treated mice developed no urothelial lesions in spite of OH-BBN exposure. Immunohistochemical analyses at study conclusion revealed that silymarin and silibinin decreased cell proliferation by 42% (P < 0.001) and 44% (P < 0.001) and increased apoptosis by 4-fold (P < 0.05) and 6-fold (P < 0.05) in OH-BBN–induced urothelium, respectively. Antiproliferative and apoptotic effects of silymarin and silibinin were associated with decreases in (a) cyclin D1 protein level and extracellular signal–regulated kinase-1/2 phosphorylation and in (b) protein levels of survivin and nuclear phospho-p65 (Ser276 and Ser536), respectively. Together, these results suggest that silymarin and silibinin inhibit chemically induced urinary bladder tumor growth and progression possibly by inhibiting cell proliferation and enhancing apoptosis. [Mol Cancer Ther 2007;6(12):3248–55]
Acta Pharmacologica Sinica | 2007
Komal Raina; Rajesh Agarwal
AbstractIn an effort to develop effective alternative strategies that increase the therapeutic efficacy and minimize the systemic toxicity of chemotherapeutic agents, more efforts are being directed towards the investigation of dietary supplements and other phytotherapeutic agents for their synergistic efficacy in combination with anticancer drugs. One such agent is silibinin, which has shown promising chemopreventive and anticancer effects in various in vitro and in vivo studies. The present review summarizes the effects of the combination of silibinin and chemotherapeutic drugs on the growth inhibition, cell cycle regulation, and apoptosis induction in prostate, breast, and lung cancer systems. Together, the results indicate a synergistic effect of silibinin on growth inhibition, reversal of chemoresistance, apoptosis induction, and a strong increase in G2–M checkpoint arrest when given in combination with these drugs. These results are highly significant with respect to the combined chemotherapy approach, wherein the criteria for combination is that the response has to be synergistic and that the drugs should not share common mechanisms of resistance and not overlap in their major side-effects.
Clinical Cancer Research | 2011
Kumaraguruparan Ramasamy; Lori D. Dwyer-Nield; Natalie J. Serkova; Kendra M. Hasebroock; Alpna Tyagi; Komal Raina; Rana P. Singh; Alvin M. Malkinson; Rajesh Agarwal
Purpose: Sustained nitric oxide (NO) generation positively correlates with lung cancer development and progression. Herein, we genetically confirmed this role of iNOS and evaluated the chemopreventive efficacy of silibinin in carcinogen-treated B6/129 wild-type (WT) and iNOS−/− mice. Experimental Design: Male B6/129-Nos2tm1Lau (iNOS−/−) and B6/129PF2 WT mice were injected i.p. with 1 mg/g body weight urethane once weekly for 7 consecutive weeks, followed by silibinin gavage (742 mg/kg body weight) for 5 d/wk for 18 weeks. Results: Quantification of micro-CT data in real-time showed that silibinin significantly decreases urethane-induced tumor number and size in WT mice, consistent with measurements made ex vivo at study termination. Genetic ablation of iNOS decreased urethane-induced tumor multiplicity by 87% (P < 0.001) compared to WT mice. Silibinin decreased tumor multiplicity by 71% (P < 0.01) in WT mice, but did not show any such considerable effect in iNOS−/− mice. Tumors from WT mice expressed more iNOS (P < 0.01) but almost similar eNOS and nNOS than those in silibinin-treated mice. In these tumors, silibinin moderately (P < 0.01) inhibited cell proliferation but strongly (P < 0.01) reduced the number of newly formed nestin-positive microvessels. Silibinin decreased VEGFR2 level, and STAT3 and NF-κB activation in tumors. Conclusions: The lack of effect of silibinin in iNOS−/− mice suggests that silibinin exerts most of its chemopreventive and angiopreventive effects through its inhibition of iNOS expression in lung tumors. Our results support iNOS as a potential target for controlling lung cancer, and demonstrate the value of real-time noninvasive micro-CT imaging modality for evaluating the efficacy of lung cancer chemopreventive agents. Clin Cancer Res; 17(4); 1–9. ©2010 AACR.