Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Komal Vig is active.

Publication


Featured researches published by Komal Vig.


Nanomaterials | 2011

Functionalized Gold Nanoparticles and Their Biomedical Applications

Pooja M. Tiwari; Komal Vig; Vida A. Dennis; Shree Ram Singh

Metal nanoparticles are being extensively used in various biomedical applications due to their small size to volume ratio and extensive thermal stability. Gold nanoparticles (GNPs) are an obvious choice due to their amenability of synthesis and functionalization, less toxicity and ease of detection. The present review focuses on various methods of functionalization of GNPs and their applications in biomedical research. Functionalization facilitates targeted delivery of these nanoparticles to various cell types, bioimaging, gene delivery, drug delivery and other therapeutic and diagnostic applications. This review is an amalgamation of recent advances in the field of functionalization of gold nanoparticles and their potential applications in the field of medicine and biology.


International Journal of Nanomedicine | 2012

Functionalized carbon nanotubes: biomedical applications

Sandhya Vardharajula; Sk Z Ali; Pooja M. Tiwari; Erdal Eroglu; Komal Vig; Vida A. Dennis; Shree Ram Singh

Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.


Biomaterials | 2014

Enhanced intracellular translocation and biodistribution of gold nanoparticles functionalized with a cell-penetrating peptide (VG-21) from vesicular stomatitis virus.

Pooja M. Tiwari; Erdal Eroglu; Swapnil Bawage; Komal Vig; Michael Miller; Shreekumar Pillai; Vida A. Dennis; Shree Ram Singh

Reduced toxicity and ease of modification make gold nanoparticles (GNPs) suitable for targeted delivery, bioimaging and theranostics by conjugating cell-penetrating peptides (CPPs). This study presents the biodistribution and enhanced intracellular uptake of GNPs functionalized with VG-21, a CPP derived from vesicular stomatitis virus glycoprotein (G). Cell penetrating efficiency of VG-21 was demonstrated using CellPPD web server, conjugated to GNPs and were characterized using, UV-visible and FTIR spectroscopy, transmission electron microscopy, dynamic light scattering and zeta potential. Uptake of VG-21 functionalized GNPs (fGNPs) was tested in eukaryotic cell lines, HEp-2, HeLa, Vero and Cos-7, using flow cytometry, fluorescence and transmission electron microscopy (TEM), and inductively coupled plasmon optical emission spectroscopy (ICP-OES). The effects of nanoparticles on stress and toxicity related genes were studied in HEp-2 cells. Cytokine response to fGNPs was studied in vitro and in vivo. Biodistribution of nanoparticles was studied in BALB/c mice using TEM and ICP-OES. VG-21, GNPs and fGNPs had little to no effect on cell viability. Upon exposure to fGNPs, HEp-2 cells revealed minimal down regulation of stress response genes. fGNPs displayed higher uptake than GNPs in all cell lines with highest internalization by HEp-2, HeLa and Cos-7 cells, in endocytotic vesicles and nuclei. Cytokine ELISA showed that mouse J774 cells exposed to fGNPs produced less IL-6 than did GNP-treated macrophage cells, whereas TNF-α levels were low in both treatment groups. Biodistribution studies in BALB/c mice revealed higher accumulation of fGNPs than GNPs in the liver and spleen. Histopathological analyses showed that fGNP-treated mice accumulated 35 ng/mg tissue and 20 ng/mg tissue gold in spleen and liver respectively, without any adverse effects. Likewise, serum cytokines were low in both GNP- and fGNP-treated mice. Thus, VG-21-conjugated GNPs have enhanced cellular internalization and are suitable for various biomedical applications as nano-conjugates.


Nanotechnology | 2010

Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their Nylon-6 polymer nanocomposite fibers for antimicrobial applications

Vijaya K. Rangari; Shaik Jeelani; Angel Hundley; Komal Vig; Shree Ram Singh; Shreekumar Pillai

Ag-coated CNTs hybrid nanoparticles (Ag/CNTs) were prepared by ultrasonic irradiation of dimethylformamide (DMF) and silver (I) acetate precursors in the presence of CNTs. The morphology of Ag/CNTs was characterized using x-ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon-6 powder and 1 wt% Ag/CNTs mixture was dispersed uniformly using a noncontact spinning technique. The dried mixture was melted in a single screw extrusion machine and then extruded through an orifice. Extruded filaments were later stretched and stabilized by sequentially passing them through a set of tension adjusters and a secondary heater. The Nylon-6/Ag/CNT hybrid polymer nanocomposite (HPNC) fibers, which were of approximately 80 microm size, were tested for their tensile properties. The failure stress and modulus of the extruded HPNC fibers (doped with 1% Ag/CNTs) was about 72.19 % and 342.62% higher than the neat extruded Nylon-6 fiber, respectively. DSC results indicated an increase in the thermal stability and crystallization for HPNC fibers. The antibacterial activity of the Ag-coated CNTs, commercial Ag, neat Nylon-6 and plain CNTs were evaluated. Ag-coated CNTs at 25 microg demonstrated good antimicrobial activity against four common bacterial pathogens as tested by the Kirby-Bauer assay. The mean diameters of the zones of inhibition were 27.9 +/- 6.72 mm, 19.4 +/- 3.64 mm, 21.9 +/- 4.33 mm, and 24.1 +/- 4.14 mm, respectively, for Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli and Salmonella enterica serovar Typhimurium. By comparison, those obtained using the broad spectrum antibiotic amoxicillin-clavulanic acid were 37.7 +/- 2.13 mm, 28.6 +/- 4.27 mm, 22.6 +/- 1.27 mm, and 27.0 +/- 1.41 mm, respectively, for the same strains. The zones of inhibition obtained for Nylon-6 Ag-coated CNT powder at 25 microg were also high, ranging from 15.2 to 25.3 mm in contrast to commercial silver or neat Nylon-6, which did not inhibit the bacterial strains tested. Further, the Nylon-6 nanocomposite fibers infused with Ag/CNTs inhibited bacterial growth by 11-20%. Our results suggest that nylon nanocomposite fibers infused with Ag-coated CNTs have significant antimicrobial activity.


International Journal of Molecular Sciences | 2016

Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review

Atul A. Chaudhari; Komal Vig; Dieudonné R. Baganizi; Rajnish Sahu; Saurabh Dixit; Vida A. Dennis; Shree Ram Singh; Shreekumar Pillai

Over centuries, the field of regenerative skin tissue engineering has had several advancements to facilitate faster wound healing and thereby restoration of skin. Skin tissue regeneration is mainly based on the use of suitable scaffold matrices. There are several scaffold types, such as porous, fibrous, microsphere, hydrogel, composite and acellular, etc., with discrete advantages and disadvantages. These scaffolds are either made up of highly biocompatible natural biomaterials, such as collagen, chitosan, etc., or synthetic materials, such as polycaprolactone (PCL), and poly-ethylene-glycol (PEG), etc. Composite scaffolds, which are a combination of natural or synthetic biomaterials, are highly biocompatible with improved tensile strength for effective skin tissue regeneration. Appropriate knowledge of the properties, advantages and disadvantages of various biomaterials and scaffolds will accelerate the production of suitable scaffolds for skin tissue regeneration applications. At the same time, emphasis on some of the leading challenges in the field of skin tissue engineering, such as cell interaction with scaffolds, faster cellular proliferation/differentiation, and vascularization of engineered tissues, is inevitable. In this review, we discuss various types of scaffolding approaches and biomaterials used in the field of skin tissue engineering and more importantly their future prospects in skin tissue regeneration efforts.


Nanomedicine: Nanotechnology, Biology and Medicine | 2009

Enhanced delivery and expression of a nanoencapsulated DNA vaccine vector for respiratory syncytial virus

Seyhan Boyoglu; Komal Vig; Shreekumar Pillai; Vijay K. Rangari; Vida A. Dennis; Fayaz Khazi; Shree Ram Singh

UNLABELLED This study evaluated the efficiency of chitosan-encapsulated DNA-based respiratory syncytial virus (RSV) vaccine. Antigenic regions of RSV F, M2, and G genes were cloned into the human cytomegalovirus promoter-based constitutive expression vector, resulting in a DNA vaccine vector named DR-FM2G. This vector was used to formulate DNA-chitosan nanoparticles (DCNPs) using a complex coacervation process that yielded an encapsulation efficiency of 94.7%. The DCNP sizes ranged from 80 to 150 nm with uniform size distribution and spherical shape. DNA release was between 50% and 60% when DCNPs were incubated with similar gastrointestinal fluid (pH 2), whereas 21% to 25% of DNA was released from DCNPs in 30 minutes at pH 10. Differential scanning calorimetry showed DCNPs to be more stable than naked DNA or chitosan, offering protection from DNA degradation by nucleases. DCNPs were not toxic to cells when used at concentrations < or =400 microg/mL. Immunohistochemical and real-time polymerase chain reaction results showed a higher level of RSV protein expression in mouse tissues given when DCNPs were injected intravenously as compared with naked DNA. FROM THE CLINICAL EDITOR This study evaluated the efficiency of chitosan-encapsulated DNA-based respiratory syncytial virus (RSV) vaccine, showing a higher level of RSV protein expression in mouse tissues given when DCNPs were injected intravenously as compared with naked DNA.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis.

Sumit Arora; Nikhil Tyagi; Arun Bhardwaj; Lilia Rusu; Rohan Palanki; Komal Vig; Shree Ram Singh; Ajay P. Singh; Srinivas Palanki; Michael Miller; James E. Carter; Seema Singh

UNLABELLED Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. FROM THE CLINICAL EDITOR Excessive exposure to the sun is known to increase the risk of skin cancer due to DNA damage. In this work, the authors tested the use of silver nanoparticles as protective agents against ultraviolet radiation. The positive results may open a door for the use of silver nanoparticle as novel agents in the future.


International Journal of Molecular Sciences | 2017

Advances in Skin Regeneration Using Tissue Engineering

Komal Vig; Atul A. Chaudhari; Shweta Tripathi; Saurabh Dixit; Rajnish Sahu; Shreekumar Pillai; Vida A. Dennis; Shree Ram Singh

Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application.


International Journal of Nanomedicine | 2013

A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system

Erdal Eroglu; Pooja M. Tiwari; Alain B Waffo; Michael Miller; Komal Vig; Vida A. Dennis; Shree Ram Singh

The transport of DNA into eukaryotic cells is minimal because of the cell membrane barrier, and this limits the application of DNA vaccines, gene silencing, and gene therapy. Several available transfection reagents and techniques have been used to circumvent this problem. Alternatively, nonviral nanoscale vectors have been shown to bypass the eukaryotic cell membrane. In the present work, we developed a unique nanomaterial, pHEMA+chitosan nanospheres (PCNSs), which consisted of poly(2-hydroxyethyl methacrylate) nanospheres surrounded by a chitosan cationic shell, and we used this for encapsulation of a respiratory syncytial virus (RSV)-F gene construct (a model for a DNA vaccine). The new nanomaterial was capable of transfecting various eukaryotic cell lines without the use of a commercial transfection reagent. Using transmission electron microscopy, (TEM), fluorescence activated cell sorting (FACS), and immunofluorescence, we clearly demonstrated that the positively charged PCNSs were able to bind to the negatively charged cell membrane and were taken up by endocytosis, in Cos-7 cells. Using quantitative polymerase chain reaction (qPCR), we also evaluated the efficiency of transfection achieved with PCNSs and without the use of a liposomal-based transfection mediator, in Cos-7, HEp-2, and Vero cells. To assess the transfection efficiency of the PCNSs in vivo, these novel nanomaterials containing RSV-F gene were injected intramuscularly into BALB/c mice, resulting in high copy number of the transgene. In this study, we report, for the first time, the application of the PCNSs as a nanovehicle for gene delivery in vitro and in vivo.


Molecular Biotechnology | 2009

Secondary RNA structure and its role in RNA interference to silence the respiratory syncytial virus fusion protein gene.

Komal Vig; Nuruddeen D. Lewis; Eddie G. Moore; Shreekumar Pillai; Vida A. Dennis; Shree Ram Singh

RNA interference (RNAi) is a post-transcriptional, gene silencing mechanism which uses small interfering RNA molecules (siRNA) for gene silencing. Respiratory Syncytial Virus (RSV) is an important respiratory pathogen of medical significance that causes high mortality in infants. The fusion (F) protein of RSV is a good target for therapeutic purposes as it is primarily responsible for penetration of the virus into host cells and subsequent syncytium formation during infection. In the present study, four siRNAs were designed and used individually as well as a mixture, to silence the RSV F gene. The relationship between siRNA design, target RNA structure, and their thermodynamics was also investigated. Silencing of F gene was observed using indirect immunofluorescence, western blot, reverse transcription PCR, and progeny viral titers. Our results show F gene silencing by all the four siRNAs individually and collectively. RT-PCR analysis revealed a decrease in mRNA level which corresponded to decreased F protein expression. siRNAs also inhibited RSV progeny as shown by viral titer estimation on infected HEp-2 cells. The present study demonstrates the silencing of the F gene using siRNA. Thermodynamic characteristics of the target RSV mRNA and siRNA seem to play an important role in siRNA gene silencing efficiency.

Collaboration


Dive into the Komal Vig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vida A. Dennis

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seyhan Boyoglu

Alabama State University

View shared research outputs
Top Co-Authors

Avatar

Erdal Eroglu

İzmir Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Angel Hundley

Alabama State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge