Komandoor E. Achyuthan
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Komandoor E. Achyuthan.
Analytical Biochemistry | 1992
Thomas F. Slaughter; Komandoor E. Achyuthan; Thung-Shenq Lai; Charles S. Greenberg
Transglutaminases belong to an important family of enzymes involved in hemostasis, skin formation, and wound healing. We describe a technique for the measurement of transglutaminase activity using polystyrene microtiter plates coated with N,N-dimethylcasein. The substrate 5-(biotinamido)pentylamine is covalently incorporated into N,N-dimethylcasein by transglutaminase in a calcium-dependent reaction. The biotinylated product is detected by streptavidin-alkaline phosphatase and quantitated by measuring the absorbance at 405 nm following the addition of p-nitrophenyl phosphate. The assay is sensitive, specific, and linear at plasma factor XIIIa concentrations between 0.08 and 1.25 micrograms/ml and at purified guinea pig liver transglutaminase concentrations between 0.05 and 0.8 microgram/ml. The intra-assay coefficient of variation is less than 8%. The solid-phase assay was used to quantitate the transglutaminase activity in Escherichia coli extracts expressing recombinant factor XIII A-chains and to analyze factor XIIIa inhibitors. This method will facilitate the analysis of structure-function relationships of the transglutaminases using recombinant DNA methods. Furthermore, screening of natural and synthetic factor XIIIa inhibitors will be expedited by this solid-phase microtiter plate assay.
Biochemical and Biophysical Research Communications | 1988
David C. Sane; Tammy L. Moser; Anne M. Pippen; Charles J. Parker; Komandoor E. Achyuthan; Charles S. Greenberg
Vitronectin (VN) was found to be a substrate for both plasma transglutaminase (Factor XIIIa) and guinea pig liver transglutaminase (TG). Incorporation of [3H]-putrescine indicated the presence of reactive glutaminyl residues in VN. When VN was incubated with TG or Factor XIIIa, in the absence of putrescine, multimeric covalent complexes were identified, indicating that VN can also contribute lysyl residues to the bond catalyzed by transglutaminases. Cross-linking of VN by TG and Factor XIIIa may modulate the effects of VN on the complement and coagulation systems in hemostatic plugs and extracellular matrix.
Biochimica et Biophysica Acta | 1988
Ann Mary; Komandoor E. Achyuthan; Charles S. Greenberg
While the transglutaminase activity is associated exclusively with the thrombin-cleaved a chains of plasma Factor XIII, there is little information regarding the role of the b-chains. The present investigations were undertaken to clarify the role of the b-chains during proteolytic activation of plasma factor XIII a-chains. The a-chains of platelet Factor XIII (a2) were extremely sensitive to alpha-thrombin proteolysis, especially in the presence of 5 mM EDTA, resulting in two major fragments with molecular masses 51 +/- 3 kDa and 19 +/- 4 kDa. Furthermore, fibrin enhanced the alpha-thrombin proteolysis of thrombin-cleaved platelet Factor XIII a-chains in presence of CaCl2 or EDTA, resulting in several peptide fragments with molecular masses from 51 +/- 3 kDa to 14 +/- 4 kDa. By contrast, thrombin-cleaved a-chains of plasma Factor XIII (a2b2) were not further degraded by alpha-thrombin in presence of 5 mM EDTA. Even in the combined presence of 5 mM EDTA and 0.1 mg/ml fibrin, alpha-thrombin proteolysis of plasma Factor XIIIa was limited to the formation of a 76 kDa fragment (= Factor XIIIa), a 51 +/- 3 kDa fragment and trace amounts of a 14 +/- 4 kDa species. Platelet Factor XIII proteolyzed by 500 nM alpha-thrombin in presence of 5 mM EDTA expressed less than 20% of enzymatic activity obtained when platelet Factor XIII was activated in presence of 5 mM CaCl2. In contrast, plasma Factor XIII activated by 500 nM apha-thrombin in presence of 5 mM EDTA expressed nearly 65% of original transglutaminase activity. Likewise, when plasma Factor XIII was proteolyzed by 100-1000 nM gamma-thrombin in presence of 5 mM CaCl2 or 5 mM EDTA, maximal transglutaminase activity was observed. However, when platelet Factor XIII was similarly treated with gamma-thrombin in presence of 5 mM EDTA, only one-half the original transglutaminase activity was obtained. The b-chains thus appear to mimic the function of Ca2+ in preserving transglutaminase activity of thrombin-cleaved a-chains. The b-chains of plasma Factor XIII were not degraded by either alpha- or gamma-thrombin treatment, in presence of 5 mM EDTA or 5 mM CaCl2. Both platelet and plasma Factor XIII a-chains were degraded by trypsin to fragments with molecular masses of 51 +/- 3 kDa and 19 +/- 4 kDa in presence of 5 mM CaCl2 and to fragments with molecular masses of 19 +/- 4 kDa and lower, in presence of 5 mM EDTA.(ABSTRACT TRUNCATED AT 400 WORDS)
Archives of Biochemistry and Biophysics | 1988
Ann Mary; Komandoor E. Achyuthan; Charles S. Greenberg
We investigated the effect of divalent metal ions on the proteolytic cleavage and activation of platelet Factor XIII by thrombin and trypsin. In the absence of metal ions (5 mM EDTA), trypsin and thrombin rapidly degraded platelet Factor XIII (80 kDa) to low-molecular-mass peptides (50-19 kDa) with simultaneous loss of transglutaminase activity. Divalent metal ions protected Factor XIII from proteolytic inactivation with an order of efficacy of Ca2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. Calcium (2 mM) increased by 10- to 1000-fold the trypsin and thrombin concentrations required to degrade Factor XIII to a 19-kDa peptide. Factor XIIIa formed by thrombin in the presence of 5 mM EDTA had one-half the specific activity of Factor XIIIa formed in the presence of calcium. Factor XIII was cleaved by trypsin in the presence of 5 mM Ca2+ to a 51 +/- 3-kDa fragment that had 60% of the original Factor XIIIa activity. A similar tryptic peptide formed in the presence of 5 mM EDTA did not have transglutaminase activity. In the presence of 5 mM Mg2+, thrombin cleaved Factor XIII to a major 51 +/- 3-kDa fragment that had 60% of the Factor XIIIa activity. Mn2+ (0.1-5 mM) limited trypsin and thrombin proteolysis. The resulting digest containing a population of Factor XIII fragments (50-14 kDa) expressed 50-60% transglutaminase activity of Factor XIIIa. Factor XIII was fully activated by both trypsin and thrombin in the presence of 5 mM Zn2+, resulting in two fragments of 76 and 72 kDa. We conclude that the binding of divalent metal ions to platelet Factor XIII induces conformational changes in the protein that alter its susceptibility to proteolysis and influence the expression of transglutaminase activity.
Biochimica et Biophysica Acta | 1986
Komandoor E. Achyuthan; Joseph V. Dobson; Charles S. Greenberg
Abstract During blood clotting Factor XIIIa, a transglutaminase, catalyzes the formation of covalent bonds between the ϵ-amino group of lysine and the γ-carboxamide group of peptide-bound glutamine residues between fibrin molecules. We report that glycyl- l -prolyl- l -arginyl- l -proline (GPRP), a terapeptide that binds to the fibrin polymerization sites (D-domain) in fibrin(ogen), inhibits transglutaminase cross-linking by modifying the glutamine residues in the α- and γ-chains of fibrinogen. Purified platelet Factor XIIIa, and tissue transglutaminase from adult bovine aortic endothelial cells were used for the cross-linking studies. Gly-Pro (GP) and Gly-Pro-Gly-Gly (GPGG), peptides which do not bind to fibrinogen, had no effect on transglutaminase cross-linking. GPRP inhibited platelet Factor XIIIa-catalyzed cross-linking between the γ-chains of the following fibrin(ogen) derivatives: fibrin monomers, fibrinogen and polyermized fibrin fibers. GPRP functioned as a reversible, noncompetitive inhibitor of Factor XIIIa-catalyzed incorporation of [3H]putrescine and [14C]methylamine into fibrinogen and Fragment D1. GPRP did not inhibit 125I-Factor XIIIa binding to polymerized fibrin, demonstrating that the Factor XIIIa binding sites on fibrin were not modified. GPRP also had no effect on Factor XIIIa cross-linking of [3H]putrescine to casein. This demonstrates that GPRP specifically modified the glutamine cross-linking sites in fibrinogen, and had no effect on either Factor XIIIa or the lysine residues in fibrinogen. GPRP also inhibited [14C]putrescine incorporation into the α- and γ-chains of fibrinogen without inhibiting β-chain incorporation, suggesting that the intermolecular cross-linking sites were selectively affected. Furthermore, GPRP inhibited tissue transglutaminase-catalyzed incorporation of [3H]putrescine into both fibrinogen and Fragment D1, without modifying [3H]putrescine incorporation into casein. GPRP also inhibited intermolecular α-α-chain cross-linking catalyzed by tissue transglutaminase. This demonstrates that the glutamine residues in the α-chains involved in intermolecular cross-linking are modified by GPRP. This is the first demonstration that a molecule binding to the fibrin polyermization sites on the D-domain of fibrinogen modifies the glutamine cross-linking sites on the α- and γ-chains of fibrinogen.
Archives of Biochemistry and Biophysics | 1988
Charles S. Greenberg; Komandoor E. Achyuthan; Shrin Rajagopalan; Salvatore V. Pizzo
The effect of plasmin-derived fibrin(ogen) degradation products on alpha-thrombin cleavage of plasma Factor XIII was studied to identify the fibrin polymer structure that promotes Factor XIIIa formation. Fibrin polymers derived from fibrinogen and Fragment X enhanced the rate of thrombin cleavage of plasma Factor XIII in plasma or buffered solutions. The concentrations of fibrinogen and Fragment X that promoted half-maximal rates of Factor XIIIa formation were 5 and 40 micrograms/ml, respectively. Fragments Y, D, E, D-dimer, and photooxidized fibrinogen did not enhance thrombin cleavage of Factor XIII. Although purified Fragment D1 inhibited fibrin gelation, the soluble protofibrils promoted thrombin activation of Factor XIII. Noncrosslinked fibrin fibers failed to enhance thrombin cleavage of Factor XIII. In conclusion, soluble fibrin oligomers function to promote thrombin cleavage of plasma Factor XIII during blood clotting.
Biochemical and Biophysical Research Communications | 1987
Ann Mary; Komandoor E. Achyuthan; Charles S. Greenberg
The binding sites in fibrinogen for Factor XIII were localized using an immunoblotting technique. Platelet Factor XIII bound to fibrinogen and to plasmin degradation products of fibrin(ogen) including Fragments: X, D1-D3, and D-dimer, but did not bind to Fragment E. Binding of Platelet Factor XIII was independent of calcium ions but could be inhibited by the presence of 0.5 M NaCl. Binding could also be inhibited by preincubating Factor XIII with a 100-fold molar excess of fibrinogen but not by 100-fold molar excess of Fragment E. Binding of Factor XIII to fibrinogen was specific, since several other proteins tested (ovalbumin, bovine serum albumin, alpha 2-macroglobulin, beta-galactosidase, fructose kinase, lactic dehydrogenase, triose phosphate isomerase, fumarase and pyruvate kinase) did not bind Factor XIII. Furthermore, binding was not observed either when Factor XIII was left out or when antiFactor XIII antiserum was substituted with nonimmune serum. When fibrinogen was reduced prior to electrophoresis, Factor XIII bound to the A alpha and B beta chains of fibrinogen and des A,B fibrinogen, the B beta-chain of Fragment X, but not the gamma-chains. Localization of the Factor XIII binding sites to the carboxy terminal segments of the A alpha and B beta chains in the Fragment D-domain of fibrinogen could have important physiological consequences.
Thrombosis Research | 1989
Paul Conkling; Komandoor E. Achyuthan; Charles S. Greenberg; Thomas F. Newcomb; J. Brice Weinberg
The physiologic function of the monocyte transglutaminases is not known. In this study, we detected Factor XIII A-subunit antigen and tissue transglutaminase antigen in human monocytes by polyacrylamide gel electrophoresis and immunoblotting techniques. Flow cytometric analysis demonstrated that 27% and 49% of the total Factor XIII antigen in monocytes and human peritoneal macrophages, respectively, are expressed on the surface of the cells. Monocytes maintained in culture for 8 days had a 4-fold increase in Factor XIIIa activity and a 3.2-fold increase in the amount of Factor XIII antigen/mg cell protein. However, there was no increase in the tissue transglutaminase activity or antigen levels in cultured monocytes. In addition, we identified a Factor XIII deficient individual who does not express Factor XIII activity or antigen in plasma, platelets, monocytes, lymphocytes or erythrocytes. Intact monocytes from normal donors were able to cross-link fibrin formed in the plasma from the Factor XIII deficient individual. This suggests that transglutaminase activity expressed by peripheral blood monocytes may play a physiologic role in cross-linking fibrin during blood clotting or inflammation.
Molecular and Cellular Biochemistry | 1998
Komandoor E. Achyuthan
Solution- and solid-phase techniques were used to probe Factor XIII A-chain-a-thrombin interactions. α-Thrombin activated Factor XIII more efficiently (Km = 0.83 ± 0.08 × 10-7 M; V/K = 14.90 ± 3.20 × 10-3 min-1) than β-thrombin (Km = 6.14 ± 1.26 × 10-7 M; V/K = 3.30 ± 1.00 × 10-3 min-1) or γ-thrombin (Km = 6.25 ± 1.15 × 10-7 M; V/K = 3.00 ± 0.80 × 10-3 min-1). Immobilized FPR-α-thrombin bound plasma Factor XIII (Kd = 0.17 ± 0.04 × 10-7 M) > Factor XIIIa (Kd = 0.69 ± 0.18 × 10-7 M) > liver transglutaminase (Kd = 4.73 ± 1.01 × 10-7 M) > Factor XIII A-chain (Kd = 49.00 ± 9.40 × 10-7 M). FPR-α-thrombin and α-thrombin also bound immobilized Factor XIII A-chain with affinities inversely related to protease activity: maximal binding at 1.36 × 10-7 M and 13.6 × 10-7 M, respectively. Plasma Factor XIII, transglutaminase, and dithiothreitol competitively inhibited Factor XIII A-chain binding to FPR-α-thrombin: IC50 = 1.0 × 10-7 M, 3.0 × 10-6 M and 1.52 × 10-4 M, respectively. Transglutaminase also inhibited Factor XIII binding to ×-thrombin (IC50 = 2.0 × 10-6 M). Thrombin-binding site was localized to G-38-M-731 fragment of Factor XIII A-chain, probably within homologous regions (N-72-A-493) of transglutaminase. R-320-E-579 of α-thrombin was Factor XIII A-chain binding site. Intra-B-chain disulfides in α-thrombin were essential for binding but not catalytic H-363 or residues R-382-N-394 and R-443-G-475. These studies propose a structural basis for Factor XIII activation, provide a regulatory mechanism for Factor XIIIa generation, and could eventually help in the development of new structure-based inhibitors of thrombin and Factor XIIIa.
Molecular and Cellular Biochemistry | 1989
Komandoor E. Achyuthan; Ann Mary; Robin Bhaermani; Charles S. Greenberg
Calcium ions are crucial for expression of transglutaminase activity. Although lanthanides have been reported to substitute for calcium in a variety of protein functions, they did not replace the calcium requirement during transglutaminase activity measurements. Furthermore, lanthanides strongly inhibited purified liver transglutaminase activity using either casein or fibrinogen as substrates. Terbium (III) inhibition of transglutaminase-catalyzed putrescine incorporation into casein was not reversed by the presence of 10–200 fold molar excess of calcium ions (Ki for Tb(III)=60 µM). Conformational changes in purified liver transglutaminase upon Tb(III) binding were evident from a biphasic effect of Tb(III) on transglutaminase binding to fibrin. Low concentrations of Tb(III) (1 µM to 10 µM inhibited the binding of transglutaminase to fibrin, whereas higher concentrations (20 µM to 100 µM promoted binding. Conformational changes in purified liver transglutaminase consequent to Tb(III) binding were also demonstrated by fluorescence spectroscopy due to Forster energy transfer. Fluorescence emission was stable to the presence of 200 mM NaCl and 100 mM CaCl2 only partially quenched emission. Purified liver transglutaminase strongly bound to Tb(III)-Chelating Sepharose beads and binding could not be disrupted by 100 mM CaCl2 solution. Our data suggest that Tb(III)-induced conformational changes in transglutaminase are responsible for the observed effects on enzyme structure and function. The potential applications of Tb(III)-transglutaminase interactions in elucidating the structure-function relationships of liver transglutaminase are discussed.