Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kong M. Li is active.

Publication


Featured researches published by Kong M. Li.


Journal of Ethnopharmacology | 2011

Kudzu root : traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases

Ka H. Wong; George Q. Li; Kong M. Li; Valentina Razmovski-Naumovski; Kelvin Chan

Kudzu root (Gegen in Chinese) is the dried root of Pueraria lobata (Willd.) Ohwi, a semi-woody, perennial and leguminous vine native to South East Asia. It is often used interchangeably in traditional Chinese medicine with thomson kudzu root (Fengen in Chinese), the dried root of P. thomsonii, although the Chinese Pharmacopoeia has separated them into two monographs since the 2005 edition. For more than 2000 years, kudzu root has been used as a herbal medicine for the treatment of fever, acute dysentery, diarrhoea, diabetes and cardiovascular diseases. Both English and Chinese literatures on the traditional applications, phytochemistry, pharmacological activities, toxicology, quality control and potential interactions with conventional drugs of both species have been included in the present review. Over seventy phytochemicals have been identified in kudzu root, with isoflavonoids and triterpenoids as the major constituents. Isoflavonoids, in particular puerarin, have been used in most of the pharmacological studies. Animal and cellular studies have provided support for the traditional uses of kudzu root on cardiovascular, cerebrovascular and endocrine systems, including diabetes and its complications. Further studies to define the active phytochemical compositions, quality standards and clinical efficacy are warranted. Strong interdisciplinary collaboration to bridge the gap between traditional medicine and modern biomedical medicine is therefore needed for the development of kudzu root as an effective medicine for the management of diabetes and cardiovascular diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia

Lars M. Ittner; Thomas Fath; Yazi D. Ke; Mian Bi; Janet van Eersel; Kong M. Li; Peter Gunning; Jürgen Götz

Frontotemporal dementia (FTD) is characterized by cognitive and behavioral changes and, in a significant subset of patients, Parkinsonism. Histopathologically, FTD frequently presents with tau-containing lesions, which in familial cases result from mutations in the MAPT gene encoding tau. Here we present a novel transgenic mouse strain (K3) that expresses human tau carrying the FTD mutation K369I. K3 mice develop a progressive histopathology that is reminiscent of that in human FTD with the K369I mutation. In addition, K3 mice show early-onset memory impairment and amyotrophy in the absence of overt neurodegeneration. Different from our previously generated tau transgenic strains, the K3 mice express the transgene in the substantia nigra (SN) and show an early-onset motor phenotype that reproduces Parkinsonism with tremor, bradykinesia, abnormal gait, and postural instability. Interestingly, motor performance of young, but not old, K3 mice improves upon L-dopa treatment, which bears similarities to Parkinsonism in FTD. The early-onset symptoms in the K3 mice are mechanistically related to selectively impaired anterograde axonal transport of distinct cargos, which precedes the loss of dopaminergic SN neurons that occurs in aged mice. The impaired axonal transport in SN neurons affects, among others, vesicles containing the dopamine-synthesizing enzyme tyrosine hydroxylase. Distinct modes of transport are also impaired in sciatic nerves, which may explain amyotrophy. Together, the K3 mice are a unique model of FTD-associated Parkinsonism, with pathomechanistic implications for the human pathologic process.


Neuropsychopharmacology | 2003

Increased anxiety 3 months after brief exposure to MDMA ("Ecstasy") in rats: association with altered 5-HT transporter and receptor density.

Iain S. McGregor; Kelly J. Clemens; Geoffrey Van der Plasse; Kong M. Li; Glenn E. Hunt; Feng Chen; Andrew J. Lawrence

Male Wistar rats were treated with 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’) using either a high dose (4 × 5 mg/kg over 4 h) or low dose (1 × 5 mg/kg over 4 h) regimen on each of 2 consecutive days. After 10 weeks, rats were tested in the social interaction and emergence tests of anxiety. Rats previously given either of the MDMA dose regimens were significantly more anxious on both tests. After behavioral testing, and 3 months after the MDMA treatment, the rats were killed and their brains examined. Rats given the high-, but not the low-, dose MDMA treatment regimen exhibited significant loss of 5-hydroxytryptamine (5-HT) and 5-HIAA in the amygdala, hippocampus, striatum, and cortex. Quantitative autoradiography showed loss of SERT binding in cortical, hippocampal, thalamic, and hypothalamic sites with the high-dose MDMA regime, while low-dose MDMA only produced significant loss in the medial hypothalamus. Neither high- nor low-dose MDMA affected 5HT1A receptor density. High-dose MDMA increased 5HT1B receptor density in the nucleus accumbens and lateral septum but decreased binding in the globus pallidus, insular cortex and medial thalamus. Low-dose MDMA decreased 5HT1B receptor density in the hippocampus, globus pallidus, and medial thalamus. High-dose MDMA caused dramatic decreases in cortical, striatal, thalamic, and hypothalamic 5HT2A/2C receptor density, while low-dose MDMA tended to produce similar effects but only significantly in the piriform cortex. These data suggest that even brief, relatively low-dose MDMA exposure can produce significant, long-term changes in 5-HT receptor and transporter function and associated emotional behavior. Interestingly, long-term 5-HT depletion may not be necessary to produce lasting effects on anxiety-like behavior after low-dose MDMA.


PLOS ONE | 2013

Analysis of cannabis seizures in NSW, Australia: cannabis potency and cannabinoid profile.

Wendy Swift; Alexander Wong; Kong M. Li; Jonathon C. Arnold; Iain S. McGregor

Recent analysis of the cannabinoid content of cannabis plants suggests a shift towards use of high potency plant material with high levels of Δ9-tetrahydrocannabinol (THC) and low levels of other phytocannabinoids, particularly cannabidiol (CBD). Use of this type of cannabis is thought by some to predispose to greater adverse outcomes on mental health and fewer therapeutic benefits. Australia has one of the highest per capita rates of cannabis use in the world yet there has been no previous systematic analysis of the cannabis being used. In the present study we examined the cannabinoid content of 206 cannabis samples that had been confiscated by police from recreational users holding 15 g of cannabis or less, under the New South Wales “Cannabis Cautioning” scheme. A further 26 “Known Provenance” samples were analysed that had been seized by police from larger indoor or outdoor cultivation sites rather than from street level users. An HPLC method was used to determine the content of 9 cannabinoids: THC, CBD, cannabigerol (CBG), and their plant-based carboxylic acid precursors THC-A, CBD-A and CBG-A, as well as cannabichromene (CBC), cannabinol (CBN) and tetrahydrocannabivarin (THC-V). The “Cannabis Cautioning” samples showed high mean THC content (THC+THC-A = 14.88%) and low mean CBD content (CBD+CBD-A = 0.14%). A modest level of CBG was detected (CBG+CBG-A = 1.18%) and very low levels of CBC, CBN and THC-V (<0.1%). “Known Provenance” samples showed no significant differences in THC content between those seized from indoor versus outdoor cultivation sites. The present analysis echoes trends reported in other countries towards the use of high potency cannabis with very low CBD content. The implications for public health outcomes and harm reduction strategies are discussed.


Neuropsychopharmacology | 2004

CHRONIC FLUOXETINE TREATMENT PARTLY ATTENUATES THE LONG-TERM ANXIETY AND DEPRESSIVE SYMPTOMS INDUCED BY MDMA (ECSTASY) IN RATS

Murray R. Thompson; Kong M. Li; Kelly J. Clemens; Clint Gurtman; Glenn E. Hunt; Jennifer L. Cornish; Iain S. McGregor

Use of the drug 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’) can have long-term adverse effects on emotion in both humans and laboratory animals. The present study examined whether chronic treatment with the antidepressant drug fluoxetine could reverse such effects. Male Wistar rats were briefly exposed to MDMA (4 × 5 mg/kg over 4 h) or vehicle on 2 consecutive days. Approximately 9–12 weeks later, half of the rats received a dose of approximately 6 mg/kg/day fluoxetine in their drinking water for a 5-week period. Fluoxetine administration reduced fluid intake and body weight in MDMA and vehicle pretreated rats. After several weeks of fluoxetine treatment, rats were assessed on the social interaction test, the emergence test of anxiety and the forced swim model of depression. MDMA pretreated rats showed reduced social interaction, increased anxiety on the emergence test, and increased immobility and decreased active responses in the forced swim test. Fluoxetine treatment reversed MDMA-induced anxiety in the emergence test and depressive-like effects in the forced swim test, yet exhibited no effects on the social interaction test. MDMA pretreated rats had decreased 5-HT and 5-HIAA levels in limbic and cortical regions, and decreased density of serotonin transporter sites in the cortex. Fluoxetine treatment did not greatly affect 5-HT levels in MDMA pretreated rats, but significantly decreased 5-HIAA levels in all brain sites examined. Postmortem blood serum levels of fluoxetine and norfluoxetine did not differ in MDMA and vehicle pretreated rats. These results indicate that fluoxetine may provide a treatment option for some of the deleterious long-term effects resulting from MDMA exposure.


Journal of Psychopharmacology | 2013

High levels of intravenous mephedrone (4-methylmethcathinone) self-administration in rats: Neural consequences and comparison with methamphetamine

Craig P. Motbey; Kelly J. Clemens; Nadine Apetz; Adam R. Winstock; John Ramsey; Kong M. Li; Naomi Wyatt; Paul D. Callaghan; Michael T. Bowen; Jennifer L. Cornish; Iain S. McGregor

Mephedrone (MMC) is a relatively new recreational drug that has rapidly increased in popularity in recent years. This study explored the characteristics of intravenous MMC self-administration in the rat, with methamphetamine (METH) used as a comparator drug. Male Sprague-Dawley rats were trained to nose poke for intravenous MMC or METH in daily 2 h sessions over a 10 d acquisition period. Dose-response functions were then established under fixed- and progressive-ratio (FR and PR) schedules over three subsequent weeks of testing. Brains were analyzed ex vivo for striatal serotonin (5-HT) and dopamine (DA) levels and metabolites, while autoradiography assessed changes in the regional density of 5-HT and serotonin transporter (SERT) and DA transporter (DAT) and induction of the inflammation marker translocator protein (TSPO). Results showed that MMC was readily and vigorously self-administered via the intravenous route. Under a FR1 schedule, peak responding for MMC was obtained at 0.1 mg/kg/infusion, versus 0.01 mg/kg/infusion for METH. Break points under a PR schedule peaked at 1 mg/kg/infusion MMC versus 0.3 mg/kg/infusion for METH. Final intakes of MMC were 31.3 mg/kg/d compared to 4 mg/kg/d for METH. Rats self-administering MMC, but not METH, gained weight at a slower rate than control rats. METH, but not MMC, self-administration elevated TSPO receptor density in the nucleus accumbens and hippocampus, while MMC, but not METH, self-administration decreased striatal 5-hydroxyindolacetic acid (5-HIAA) concentrations. In summary, MMC supported high levels of self-administration, matching or exceeding those previously reported with other drugs of abuse.


Neuropharmacology | 2004

Cannabinoids prevent the acute hyperthermia and partially protect against the 5-HT depleting effects of MDMA (“Ecstasy”) in rats

Kirsten C. Morley; Kong M. Li; Glenn E. Hunt; Paul E. Mallet; Iain S. McGregor

Cannabinoid-MDMA interactions were examined in male Wistar rats. MDMA (4 x 5 mg/kg or 2 x 10 mg/kg over 4 h on each of 2 days) was administered with or without Delta 9-tetrahydrocannabinol (THC) (4 x 2.5 mg/kg), the synthetic cannabinoid receptor agonist CP 55,940 (2 x 0.1 or 0.2 mg/kg) or the cannabinoid receptor antagonist SR 141716 (2 x 5 mg/kg). Co-administered Delta 9-THC and CP 55,940 but not SR 141716 prevented MDMA-induced hyperthermia, causing a powerful hypothermia. Co-administered Delta 9-THC, CP 55,940 and SR 141716 all tended to decrease MDMA-induced hyperactivity. Co-administered Delta 9-THC provided protection against the long-term increases in anxiety seen in the emergence test, but not the social interaction test, 6 weeks after MDMA treatment. Co-administered Delta 9-THC and CP 55,940, but not SR 141716, partly prevented the long-term 5-HT and 5-HIAA depletion caused by MDMA in various brain regions. SR 141716 administered with CP 55,940 and MDMA prevented the hypothermic response to the CP 55,940/MDMA combination but did not alter the CP 55,940 attenuation of MDMA-induced 5-HT depletion. These results suggest a partial protective effect of co-administered cannabinoid receptor agonists on MDMA-induced 5-HT depletion and long-term anxiety. This action appears to operate independently of cannabinoid CB1 receptors.


Current Medicinal Chemistry | 2013

The Pentacyclic Triterpenoids in Herbal Medicines and Their Pharmacological Activities in Diabetes and Diabetic Complications

Ali Alqahtani; Kaiser Hamid; Antony Kam; Ka H. Wong; Z. Abdelhak; Valentina Razmovski-Naumovski; Kelvin Chan; Kong M. Li; Paul W. Groundwater; George Q. Li

Pentacyclic triterpenoids including the oleanane, ursane and lupane groups are widely distributed in many medicinal plants, such as Glycyrrhiza species, Gymnema species, Centella asiatica, Camellia sinensis, Crataegus species and Olea europaea, which are commonly used in traditional medicine for the treatment of diabetes and diabetic complications. A large number of bioactive pentacyclic triterpenoids, such as oleanolic acid, glycyrrhizin, glycyrrhetinic acid, ursolic acid, betulin, betulinic acid and lupeol have shown multiple biological activities with apparent effects on glucose absorption, glucose uptake, insulin secretion, diabetic vascular dysfunction, retinopathy and nephropathy. The versatility of the pentacyclic triterpenes provides a promising approach for diabetes management.


Current Pharmaceutical Design | 2010

Herbal Medicines and Nutraceuticals for Diabetic Vascular Complications: Mechanisms of Action and Bioactive Phytochemicals

Eshaifol A. Omara; Antony Kam; Ali Alqahtania; Kong M. Li; Valentina Razmovski-Naumovski; Srinivas Nammi; Kelvin Chan; Basil D. Roufogalis; George Q. Li

Diabetes is one of the most prevalent chronic diseases throughout the world. The majority of its complications arise from vascular-related inflammation apparently initiated by endothelial cell injury. One cause of this injury has been attributed to hyperglycaemia-induced reactive oxygen species. Consequently, current drug developmental strategy has targeted specific inflammatory and oxidative stress pathways for the prevention of diabetic vascular complications. Herbal medicines have traditionally been used for the treatment of diabetes and its complications. In fact, current pre-clinical and clinical studies have demonstrated that many of them exhibit potent anti-inflammatory and anti-oxidative properties, and have also identified the active phytochemicals responsible for their activities. The present review summarises the latest research on the molecular mechanisms of diabetic vascular complications, and evaluates the level of scientific evidence for common herbal medicines and their bioactive phytochemicals. These agents have been shown to be effective through various mechanisms, particularly the NF-κB signalling pathways. Overall, herbal medicines and nutraceuticals, as well as their bioactive components, which exhibit anti-inflammatory and anti-oxidative properties, provide a promising approach for the prevention and treatment of diabetic complications.


PLOS ONE | 2012

Mephedrone in Adolescent Rats: Residual Memory Impairment and Acute but Not Lasting 5-HT Depletion

Craig P. Motbey; Emily A. Karanges; Kong M. Li; Shane M. Wilkinson; Adam R. Winstock; John Ramsay; Callum Hicks; Michael D. Kendig; Naomi Wyatt; Paul D. Callaghan; Iain S. McGregor

Mephedrone (4-methylmethcathinone, MMC) is a popular recreational drug, yet its potential harms are yet to be fully established. The current study examined the impact of single or repeated MMC exposure on various neurochemical and behavioral measures in rats. In Experiment 1 male adolescent Wistar rats received single or repeated (once a day for 10 days) injections of MMC (30 mg/kg) or the comparator drug methamphetamine (METH, 2.5 mg/kg). Both MMC and METH caused robust hyperactivity in the 1 h following injection although this effect did not tend to sensitize with repeated treatment. Striatal dopamine (DA) levels were increased 1 h following either METH or MMC while striatal and hippocampal serotonin (5-HT) levels were decreased 1 h following MMC but not METH. MMC caused greater increases in 5-HT metabolism and greater reductions in DA metabolism in rats that had been previously exposed to MMC. Autoradiographic analysis showed no signs of neuroinflammation ([125I]CLINDE ligand used as a marker for translocator protein (TSPO) expression) with repeated exposure to either MMC or METH. In Experiment 2, rats received repeated MMC (7.5, 15 or 30 mg/kg once a day for 10 days) and were examined for residual behavioral effects following treatment. Repeated high (30 mg/kg) dose MMC produced impaired novel object recognition 5 weeks after drug treatment. However, no residual changes in 5-HT or DA tissue levels were observed at 7 weeks post-treatment. Overall these results show that MMC causes acute but not lasting changes in DA and 5-HT tissue concentrations. MMC can also cause long-term memory impairment. Future studies of cognitive function in MMC users are clearly warranted.

Collaboration


Dive into the Kong M. Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelvin Chan

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antony Kam

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly J. Clemens

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge