Kong W
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kong W.
PLOS ONE | 2014
Lingling Zeng; Yang Yang; Yujuan Hu; Yu Sun; Zhengde Du; Zhen Xie; Tao Zhou; Kong W
Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal). We showed that malondialdehyde (MDA) levels were increased and manganese superoxide dismutase (SOD2) activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA) 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS) homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.
Hearing Research | 2012
Zhengde Du; Yang Yang; Yujuan Hu; Yu Sun; Sulin Zhang; Wei Peng; Yi Zhong; Xiang Huang; Kong W
In humans, chronic dyslipidemia associated with elevated triglycerides may reduce auditory function. However, there is little evidence available in the literature concerning the effects of a long-term high-fat diet (HFD) on the inner ears of animals. The purpose of this study was to investigate the effect of 12 month-HFD on the inner ear of Sprague-Dawley rats and on the D-galactose (D-gal)-induced aging process in the inner ear. We found that 12 month-HFD markedly elevated the auditory brainstem response (ABR) threshold in the high-frequency region. The HFD significantly increased the generation of reactive oxygen species (ROS) and the expressions of NADPH oxidase (NOX) and the uncoupling proteins (UCP). Furthermore, an elevated accumulation of the mitochondrial DNA (mtDNA) common deletion (CD) and mitochondrial ultrastructural changes in the inner ear suggested that there was mitochondrial damage in response to the excessive fat intake. The expression level of cleaved caspase-3 and the number of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labelling (TUNEL)-positive cells in the inner ear were increased by the HFD. The effects of D-gal on the inner ears were similar with 12 month-HFD. We found that rats receiving both the HFD and D-gal exhibited a greater shift in the ABR threshold, larger increases in the expression levels of NOX, UCP and cleaved caspase-3 and an increased number of TUNEL-positive cells in the inner ear. The present study demonstrated that HFD may induce oxidative stress, mitochondrial damage and apoptosis in the inner ear, and it provided evidence regarding the link between HFD and an increased risk of age-related hearing loss.
Nature | 2017
Xue Gao; Yong Tao; Veronica Lamas; Mingqian Huang; Wei-Hsi Yeh; Bifeng Pan; Yu-Juan Hu; Johnny H. Hu; David B. Thompson; Yilai Shu; Yamin Li; Hongyang Wang; Shiming Yang; Qiaobing Xu; Daniel B. Polley; M. Charles Liberman; Kong W; Jeffrey R. Holt; Zheng-Yi Chen; David R. Liu
Although genetic factors contribute to almost half of all cases of deafness, treatment options for genetic deafness are limited. We developed a genome-editing approach to target a dominantly inherited form of genetic deafness. Here we show that cationic lipid-mediated in vivo delivery of Cas9–guide RNA complexes can ameliorate hearing loss in a mouse model of human genetic deafness. We designed and validated, both in vitro and in primary fibroblasts, genome editing agents that preferentially disrupt the dominant deafness-associated allele in the Tmc1 (transmembrane channel-like gene family 1) Beethoven (Bth) mouse model, even though the mutant Tmc1Bth allele differs from the wild-type allele at only a single base pair. Injection of Cas9–guide RNA–lipid complexes targeting the Tmc1Bth allele into the cochlea of neonatal Tmc1Bth/+ mice substantially reduced progressive hearing loss. We observed higher hair cell survival rates and lower auditory brainstem response thresholds in injected ears than in uninjected ears or ears injected with control complexes that targeted an unrelated gene. Enhanced acoustic startle responses were observed among injected compared to uninjected Tmc1Bth/+ mice. These findings suggest that protein–RNA complex delivery of target gene-disrupting agents in vivo is a potential strategy for the treatment of some types of autosomal-dominant hearing loss.
Clinical & Experimental Allergy | 2009
Kong W; Chen J; Z. Y. Zheng; Q. M. Shi; Yue Zhou
Background Only a few prevalence studies of allergic rhinitis (AR) have been reported in China. This study aimed to evaluate the prevalence of AR in a population of 3–6‐year‐old children in Wuhan, China.
Anti-Cancer Drugs | 2006
Kong W; Song Zhang; Guo Ck; Yanjun Wang; Xiong Chen; Su-Lin Zhang; Dan Zhang; Zheng Liu; Wen Kong
Death-associated protein kinase (DAPK) is a Ca2+/calmodulin-regulated serine/threonine kinase and a positive mediator of apoptosis. Loss of expression of the DAPK gene by aberrant promoter methylation may play an important role in cancer development and progression. The aim of this study was to investigate the frequency of gene promoter methylation of DAPK in nasopharyngeal carcinoma (NPC) and the effect of 5-Aza-2′-deoxycytidine (5-Aza-CdR), a demethylating agent, on CNE cells, a human nasopharyngeal carcinoma cell line, and on xenografts of CNE cells. Methylation-specific PCR and RT-PCR were used to determine the promoter methylation status and mRNA expression of the DAPK gene in NPC. Furthermore, CNE cells were treated in vitro and in vivo with 5-Aza-CdR to explore the effect of demethylating agents on DAPK mRNA expression and tumor growth. Hypermethylation of the DAPK gene promoter was found in 35 (76.1%) of 46 NPC samples. There was no significant difference in the promoter hypermethylation rate among samples from patients with different TNM stages. No promoter hypermethylation of the DAPK gene was found in all six chronic inflammatory nasopharyngeal tissue specimens. DAPK mRNA expression was not detected in NPC tumor specimens with promoter hypermethylation. However, DAPK mRNA expression was observed in unmethylated NPC tumors and in the chronic inflammatory nasopharyngeal tissue specimens. Promoter hypermethylation of the DAPK gene was found and no DAPK mRNA expression was detected in CNE cells. DAPK mRNA expression in CNE cells and xenografts could be restored by treatment with 5-Aza-CdR. The CNE cell xenografts of nude mice treated with 5-Aza-CdR were obviously smaller in tumor volume than those of nude mice treated with PBS. These results demonstrate that loss of DAPK expression could be associated with promoter region methylation in NPC. 5-Aza-CdR may slow the growth of CNE cells in vitro and in vivo by reactivating the DAPK gene silenced by de novo methylation.
Mutation Research | 2011
Yi Zhong; Yujuan Hu; Yang Yang; Wei Peng; Yu Sun; Bei Chen; Xiang Huang; Kong W
Mitochondrial DNA (mtDNA) mutations, especially deletions, have been suggested to play an important role in aging and degenerative diseases. In particular, the common deletion in humans and rats (4977bp and 4834bp deletion, respectively) has been shown to accumulate with age in post-mitotic tissues with high energetic demands. Among numerous deletions, the common deletion has been proposed to serve as a molecular marker for aging and play a critical role in presbyacusis. However, so far no previous publication has quantified the contribution of common deletion to the total burden of mtDNA deletions in tissues during aging process. In the present study, we established a rat model with various degrees of aging in inner ear induced by three different doses of d-galactose (d-gal) administration. Firstly, multiple mtDNA deletions in inner ear were detected by nested PCR and long range PCR. In addition to the common deletion, three novel mtDNA deletions were identified. All four deletions, located in the major arc of mtDNA, are flanked by direct repeats and involve the cytochrome c oxidase (COX) subunit III gene, encoded by mtDNA. Additionally, absolute quantitative real-time PCR assay was used to detect the level of common deletion and total deletion burden of mtDNA. The quantitative data show that the common deletion is the most frequent type of mtDNA deletions, exceeding 67.86% of the total deletion burden. Finally, increased mtDNA copy number, reduced COX activity and mosaic ultrastructural impairments in inner ear were identified in d-gal-induced aging rats. The increase of mtDNA replication may contribute to the accelerated accumulation of mtDNA deletions, which may result in impairment of mitochondrial function in inner ear. Taken together, these findings suggest that the common deletion may serve as an ideal molecular marker to assess the mtDNA damage in inner ear during aging.
Journal of Computer Assisted Tomography | 2008
Hui Ma; Ping Han; Bo Liang; Zhiliang Tian (田志梁); Ziqiao Lei; Kong W; Gan-Sheng Feng
Objective: The purpose of this study is to evaluate the usefulness of multislice spiral computed tomography (CT) in the diagnosis of congenital inner ear malformations. Methods: Forty-four patients with sensorineural hearing loss were examined on a Somatom Sensation 16 (Siemens) CT scanner. The 3-dimensional reconstructions and multiplanar reformation (MPR) were performed using the volume-rendering technique (VRT) on the workstation. Results: Of the 44 patients examined for this study, 25 patients were found to be normal and 19 patients (36 ears) were diagnosed with congenital inner ear malformations. Of the malformations, the axial, MPR, and VRT images can all display the site and degree in 33 of the ears. Volume-rendering technique images were superior to the axial images in displaying the malformations in 3 ears with small lateral semicircular canal malformations. The common malformations were Michel deformity (1 ear), common cavity deformity (3 ears), incomplete partition I (3 ears), incomplete partition II (Mondini deformity) (5 ears), vestibular and semicircular canal malformations (14 ears), enlarged vestibular aqueduct (16 ears, 6 of which had other malformations), and internal auditory canal malformation (8 ears, all accompanied by other malformations). Conclusions: Multislice spiral CT allows a comprehensively assessment of various congenital inner ear malformations through high-quality MPR and VRT reconstructions. Volume-rendering technique images can display the site and degree of the malformation 3-dimensionally and intuitionisticly. This is very useful to the cochlear implantation.
PLOS ONE | 2014
Xun Niu; Xiong Chen; Ying Xiao; Jiaqi Dong; Rui Zhang; Meixia Lu; Kong W
Background Studies have reported inconsistent findings regarding the relationship between obstructive sleep apnea (OSA) and homocysteine (HCY) level. This study aimed to assess the difference in plasma HCY level between OSA patients and controls by conducting a meta-analysis of published studies. Methods Database of PubMed, SCI, and China National Knowledge Internet (CNKI) were comprehensively searched. Eligible studies regarding plasma HCY level in OSA patients were identified by two independent reviewers. RevMan (version 5.2) and STATA (version 12.0) were employed for data synthesis. Results A total of 10 studies involving 432 subjects were included. Meta-analysis showed that plasma HCY levels in OSA group were 3.11 µmol/l higher than that in control group (95% confidence interval: 2.08 to 4.15, P<0.01). Subgroup analysis revealed a more significant differences between OSA patients and controls when average body mass index ≥30 (the total weighted mean difference (WMD) was 3.64), average age<50 (the total WMD was 3.96) and average apnea hypopnea index ≥35 (the total WMD was 4.54). Conclusions In this meta-analysis, plasma HCY levels were found to be higher in OSA patients compared to control subjects.
Hearing Research | 2013
Xueyan Zhao; Jin-Li Sun; Yujuan Hu; Yang Yang; Wenjuan Zhang; Yuan Hu; Jun Li; Yu Sun; Yi Zhong; Wei Peng; Honglian Zhang; Kong W
Aging is a natural process usually defined as a progressive loss of function with an accumulation of senescent cells. The clinical manifestations of this process include age-related hearing loss (AHL)/presbycusis. Several investigations indicated the association between a mitochondrial common deletion (CD) (mtDNA 4977-bp deletion in humans, corresponding to 4834-bp deletion in rats) and presbycusis. Previous researches have shown that peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a key regulator of mitochondrial biogenesis and energy metabolism. However, the expression of PGC-1α in the inner ear and the possible effect of PGC-1α on presbycusis are not clear. Our data demonstrated the distribution of PGC-1α and its downstream transcription factors nuclear respiratory factor-1 (NRF-1), mitochondrial transcription factor A (Tfam) and nuclear factor κB (NF-κB) in marginal cells (MCs) for the first time. To explore the role of PGC-1α in cellular senescence, we established a model of marginal cell senescence harboring the mtDNA4834 common deletion induced by d-galactose. We also found that PGC-1α and its downstream transcription factors compensatorily increased in our cell senescence model. Furthermore, the overexpression of PGC-1α induced by transfection largely increased the expression levels of NRF-1 and TFAM and significantly decreased the expression level of NF-κB in the cell senescence model. And the levels of CD, senescent cells and apoptotic cells in the cell model decreased after PGC-1α overexpression. These results suggested that PGC-1α might protect MCs in this cell model from senescence through a nuclear-mitochondrial interaction and against apoptosis. Our study may shed light on the pathogenesis of presbycusis and provide a new therapeutic target for presbycusis.
Hearing Research | 2012
Yi Zhong; Yujuan Hu; Wei Peng; Yu Sun; Yang Yang; Xueyan Zhao; Xiang Huang; Honglian Zhang; Kong W
The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the CcO activity progressively with age despite compensatory increases of PGC-1α, NRF-1 and TFAM. Therefore, CcO may be a specific intramitochondrial site of age-related deterioration in the auditory cortex, and CcO subunit III might be a target in the development of presbycusis.