Konrad J. Heuvers
Michigan Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Konrad J. Heuvers.
Archive | 2000
Konrad J. Heuvers; Daniel S. Moak; Blake Boursaw
The square roots of the positive integers can be placed on a well known square root spiral. In order to characterize it, polar coordinates are introduced with θ = g(r). Then we find the general solution to the functional equation
Aequationes Mathematicae | 1990
Konrad J. Heuvers
Linear Algebra and its Applications | 1988
Konrad J. Heuvers; Larry J. Cummings; K.P.S. Bhaskara Rao
g\left( {\sqrt {r^2 + 1} } \right) = g(r) + \arctan \left( {\frac{1} {r}} \right)
Aequationes Mathematicae | 1991
B. R. Ebanks; Konrad J. Heuvers; Che Tat Ng
Aequationes Mathematicae | 1990
Konrad J. Heuvers; Daniel S. Moak
where g(1) = 0 and g(r) is monotone increasing for r > 0. The resulting curve θ = g(r) gives a continuous square root spiral
Discrete Mathematics | 1994
Daniel S. Moak; Konrad J. Heuvers; K. P. S. Bhaskara Rao; Karen L. Collins
SummaryIf Φ is a function of one variable, itsnth order Cauchy kernel is defined by
Discrete Mathematics | 1991
Konrad J. Heuvers; Daniels S. Moak
Linear Algebra and its Applications | 1990
Konrad J. Heuvers; Daniel S. Moak
\mathop K\limits_n \Phi (x_1 ,...,x_n ) = \sum\limits_{r = 1}^n {( - 1)^{n - r} \sum\limits_{\left| J \right| = r} {\Phi (x_J )} }
Aequationes Mathematicae | 1999
Konrad J. Heuvers
Aequationes Mathematicae | 1980
Konrad J. Heuvers
where ∅ ≠J