Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konrad Steinestel is active.

Publication


Featured researches published by Konrad Steinestel.


Clinical and translational medicine | 2014

Clinical significance of epithelial-mesenchymal transition

Konrad Steinestel; Stefan Eder; Andres J. Schrader; Julie Steinestel

The concept of epithelial-mesenchymal transition (EMT), a process where cells change their epithelial towards a mesenchymal phenotype, has gained overwhelming attention especially in the cancer research community. Thousands of scientific reports investigated changes in gene, mRNA and protein expression compatible with EMT and their possible correlation with tumor invasion, metastatic spread or patient prognosis; however, up to now, a proof of clinical significance of the concept is still missing. This review, with a main focus on the role of EMT in tumors, will summarize the basic molecular events underlying EMT including the signaling pathways capable of its induction as well as changes in EMT-associated protein expression and will very briefly touch the role of microRNAs in EMT. We then outline protein markers that are used most frequently for the assessment of EMT in research and diagnostic evaluation of tumor specimens and depict the link between EMT, a cancer stem cell (CSC) phenotype and resistance to conventional antineoplastic therapies. Furthermore, we evaluate a possible correlation between EMT marker expression and patient prognosis as well as current therapeutic concepts targeting the EMT process to slow down or prevent metastatic spread of malignant tumors.


Oncotarget | 2015

Detecting predictive androgen receptor modifications in circulating prostate cancer cells

Julie Steinestel; Manuel Luedeke; Annette Arndt; Thomas J. Schnoeller; Jochen K. Lennerz; Carina Wurm; Christiane Maier; Marcus V. Cronauer; Konrad Steinestel; A.J. Schrader

Molecular modifications of the androgen receptor (AR) can cause resistance to androgen deprivation therapy (ADT) in prostate cancer patients. Since lack of representative tumor samples hinders therapy adjustments according to emerging AR-modifications, we evaluated simultaneous detection of the two most common AR modifications (AR-V7 splice variant and AR point mutations) in circulating tumor cells (CTCs). We devised a single-tube assay to detect AR-V7 splice variants and AR point mutations in CTCs using immunomagnetic cell isolation, followed by quantitative real-time PCR and DNA pyrosequencing. We prospectively investigated 47 patients with PSA progression awaiting therapy switch. Comparison of response to newly administered therapy and CTC-AR-status allowed effect size estimation. Nineteen (51%) of 37 patients with detectable CTCs carried AR-modifications. Seventeen patients carried the AR-V7 splice variant, one harbored a p.T878A point mutation and one harbored both AR-V7 and a p.H875Y mutation. We estimated a positive predictive value for response and non-response to therapy by AR status in CTCs of ~94%. Based on a conservative calculation, we estimated the effect size for molecularly-informed therapy switches for prospective clinical trial planning to ~27%. In summary, the ability to determine key resistance-mediating AR modifications in CTCs has the potential to considerably improve prostate cancer treatment.


European Urology | 2017

Expression of AR-V7 in Circulating Tumour Cells Does Not Preclude Response to Next Generation Androgen Deprivation Therapy in Patients with Castration Resistant Prostate Cancer

Christof Bernemann; Thomas J. Schnoeller; Manuel Luedeke; Konrad Steinestel; Martin Boegemann; A.J. Schrader; Julie Steinestel

The androgen receptor splice variant AR-V7 has recently been discussed as a predictive biomarker for nonresponse to next-generation androgen deprivation therapy (ADT) in patients with castration-resistant prostate cancer. However, we recently identified one patient showing a response from abiraterone despite expression of AR-V7 in his circulating tumour cells (CTC). Therefore, we precisely assessed the response in a cohort of 21 AR-V7 positive castration-resistant prostate cancer patients who had received therapy with abiraterone or enzalutamide. We detected a subgroup of six AR-V7 positive patients showing benefit from either abiraterone or enzalutamide. Their progression free survival was 26 d (censored) to 188 d. Four patients displayed a prostate-specific antigen decrease of >50%. When analysing prior therapies, we noticed that only one of the six patients had received next-generation ADT prior to CTC collection. As a result, we conclude that AR-V7 status in CTC cannot entirely predict nonresponse to next generation ADT and AR-V7-positive patients should not be systematically denied abiraterone or enzalutamide treatment, especially as effective alternative treatment options are still limited. PATIENT SUMMARY A subgroup of patients can benefit from abiraterone and/or enzalutamide despite detection of AR-V7 splice variants in their circulating tumour cells.


PLOS ONE | 2011

An SK3 Channel/nWASP/Abi-1 Complex Is Involved in Early Neurogenesis

Stefan Liebau; Julie Steinestel; Leonhard Linta; Alexander Kleger; Alexander Storch; Michael Schoen; Konrad Steinestel; Christian Proepper; Juergen Bockmann; Michael J. Schmeisser; Tobias M. Boeckers

Background The stabilization or regulated reorganization of the actin cytoskeleton is essential for cellular structure and function. Recently, we could show that the activation of the SK3-channel that represents the predominant SK-channel in neural stem cells, leads to a rapid local outgrowth of long filopodial processes. This observation indicates that the rearrangement of the actin based cytoskeleton via membrane bound SK3-channels might selectively be controlled in defined micro compartments of the cell. Principal Findings We found two important proteins for cytoskeletal rearrangement, the Abelson interacting protein 1, Abi-1 and the neural Wiskott Aldrich Syndrome Protein, nWASP, to be in complex with SK3- channels in neural stem cells (NSCs). Moreover, this interaction is also found in spines and postsynaptic compartments of developing primary hippocampal neurons and regulates neurite outgrowth during early phases of differentiation. Overexpression of the proteins or pharmacological activation of SK3 channels induces obvious structural changes in NSCs and hippocampal neurons. In both neuronal cell systems SK3 channels and nWASP act synergistic by strongly inducing filopodial outgrowth while Abi-1 behaves antagonistic to its interaction partners. Conclusions Our results give good evidence for a functional interplay of a trimeric complex that transforms incoming signals via SK3-channel activation into the local rearrangement of the cytoskeleton in early steps of neuronal differentiation involving nWASP and Abi-1 actin binding proteins.


PLOS ONE | 2013

Overexpression of p16INK4a in Urothelial Carcinoma In Situ Is a Marker for MAPK-Mediated Epithelial-Mesenchymal Transition but Is Not Related to Human Papillomavirus Infection

Julie Steinestel; Marcus V. Cronauer; Johannes Müller; Andreas Al Ghazal; Peter Skowronek; Annette Arndt; Klaus Kraft; Mark Schrader; Andres J. Schrader; Konrad Steinestel

Background The role of human papillomavirus (HPV) in bladder carcinogenesis remains controversial. Overexpression of p16INK4a, a surrogate marker for infection with oncogenic HPV in other tumours, has been described for urothelial carcinoma in situ (UCIS). Our goal was therefore to evaluate whether overexpression of p16INK4a is associated with HPV infection and to identify mechanisms of p16INK4a upregulation in UCIS. Materials and Methods In 60 tissue specimens from a total of 45 patients (UCIS and controls), we performed p16INK4a immunohistochemistry followed by detection and subclassification of HPV DNA. In a subset of samples, we tested for gene amplification of p16INK4a applying fluorescence in situ hybridization (FISH). RAS/MAPK signalling and epithelial-mesenchymal transition (EMT) was assessed using immunohistochemistry. Finally, we transfected urothelial carcinoma cells with KRAS and examined the expression of p16INK4a as well as markers of EMT. Results We found overexpression of p16INK4a in 92.6% of UCIS and in all cervical intraepithelial neoplasia (CIN) controls. In contrast, we detected high-risk HPV DNA in 80% of CIN, but none in UCIS. There was no gene amplification of p16INK4a. High levels of phosphorylated kinases and urokinase plasminogen activator (uPA) and loss of membraneous E-cadherin were detected in UCIS. KRAS transfection of urothelial carcinoma cells led to upregulation of p16INK4a and uPA accompanied by loss of E-cadherin that could be inhibited by application of the kinase-inhibitor Sorafenib. Conclusions Our results show that overexpression of p16INK4a in UCIS is neither associated with HPV infection nor p16INK4a gene amplification but is a consequence of enhanced RAS/MAPK signalling that promotes EMT, possibly due to Sorafenib-sensitive paracrine secretion of the EMT activator uPA. These findings might open a novel therapeutic option for localized but aggressive urothelial cancer.


PLOS ONE | 2011

Heterogeneous nuclear ribonucleoprotein k interacts with Abi-1 at postsynaptic sites and modulates dendritic spine morphology.

Christian Proepper; Konrad Steinestel; Michael J. Schmeisser; Jutta Heinrich; Julie Steinestel; Juergen Bockmann; Stefan Liebau; Tobias M. Boeckers

Background Abelson-interacting protein 1 (Abi-1) plays an important role for dendritic branching and synapse formation in the central nervous system. It is localized at the postsynaptic density (PSD) and rapidly translocates to the nucleus upon synaptic stimulation. At PSDs Abi-1 is in a complex with several other proteins including WASP/WAVE or cortactin thereby regulating the actin cytoskeleton via the Arp 2/3 complex. Principal Findings We identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a 65 kDa ssDNA/RNA-binding-protein that is involved in multiple intracellular signaling cascades, as a binding partner of Abi-1 at postsynaptic sites. The interaction with the Abi-1 SH3 domain is mediated by the hnRNPK-interaction (KI) domain. We further show that during brain development, hnRNPK expression becomes more and more restricted to granule cells of the cerebellum and hippocampal neurons where it localizes in the cell nucleus as well as in the spine/dendritic compartment. The downregulation of hnRNPK in cultured hippocampal neurons by RNAi results in an enlarged dendritic tree and a significant increase in filopodia formation. This is accompanied by a decrease in the number of mature synapses. Both effects therefore mimic the neuronal morphology after downregulation of Abi-1 mRNA in neurons. Conclusions Our findings demonstrate a novel interplay between hnRNPK and Abi-1 in the nucleus and at synaptic sites and show obvious similarities regarding both protein knockdown phenotypes. This indicates that hnRNPK and Abi-1 act synergistic in a multiprotein complex that regulates the crucial balance between filopodia formation and synaptic maturation in neurons.


Human Pathology | 2013

Fatal thromboembolism to the left pulmonary artery by locally applied hemostatic matrix after surgical removal of spinal schwannoma: a case report

Konrad Steinestel; Axel Geiger; Ramin Naraghi; Ulrich Kunz; Burkhardt Danz; Klaus Kraft; Gregor Freude

Locally applied hemostatic agents, mostly consisting of gelatinous granules with admixed human or bovine thrombin, are used in various surgical procedures. In our case, a 78-year-old woman underwent neurosurgical removal of an extraforaminal schwannoma of the L5 dorsal root ganglion. During the procedure, the hemostatic matrix consisting of a meshwork of bovine gelatinous granules admixed with human thrombin was locally applied to control diffuse paravertebral bleeding. Eight hours after surgery, the patient developed dyspnea with right heart failure and finally died. At autopsy, we found complete occlusion of the left pulmonary artery with a large thromboembolus. Histologically, that thromboembolus consisted of gelatinous granules with only a thin rim of surrounding, classic parietal thrombus. To our knowledge, this is the first description of fatal pulmonary embolization of a major lung artery with this material. The report depicts a possible life-threatening complication associated with the local application of hemostatic agents.


Molecular Cancer | 2014

Expression and Y435-phosphorylation of Abelson interactor 1 (Abi1) promotes tumour cell adhesion, extracellular matrix degradation and invasion by colorectal carcinoma cells

Konrad Steinestel; Silke Brüderlein; Jochen K. Lennerz; Julie Steinestel; Klaus Kraft; Christian Pröpper; Viktor Meineke; Peter Møller

BackgroundThe Abelson tyrosine kinase (c-Abl) inhibitor STI571 (Glivec®) has been shown to effectively inhibit colorectal cancer cell migration and invasion. The c-Abl substrate abelson interactor 1 (Abi1) is a key regulator of actin reorganization and upregulated in colorectal carcinoma. The specific role of Abi1 in relation to extracellular matrix degradation and effects of targeting Abi1 phosphorylation have not yet been examined. Here, we investigated the role of Abi1 in relation to invasive properties in colorectal cancer.Methods and resultsIn 56 primary human colorectal carcinoma samples, we found overexpression of Abi1 in 39% at the invasive edge of the tumour, associated with an infiltrative phenotype and high-grade tumour cell budding (p = 0.001). To explore the role of Abi1 in vitro, we employed the Abi1 expressing and KRAS-mutated CHD1 model and performed matrix degradation assays that showed Abi1 localization at specific sites of matrix degradation. Moreover, quantification of matrix dissolution demonstrated suppression after RNAi knockdown of Abi1 by 95% (p = 0.001). Importantly, treatment with STI571 did abolish Abi1 Y435-phosphorylation, suppressed the matrix dissolution, decreased fibronectin attachment, and suppressed cell invasion through reconstituted extracellular matrix.ConclusionOur data indicate that phosphorylated Abi1 contributes to the invasive properties of colorectal cancer.


PLOS ONE | 2012

Expression of Abelson Interactor 1 (Abi1) Correlates with Inflammation, KRAS Mutation and Adenomatous Change during Colonic Carcinogenesis

Konrad Steinestel; Silke Brüderlein; Julie Steinestel; Bruno Märkl; Michael J. Schwerer; Annette Arndt; Klaus Kraft; Christian Pröpper; Peter Möller

Background Abelson interactor 1 (Abi1) is an important regulator of actin dynamics during cytoskeletal reorganization. In this study, our aim was to investigate the expression of Abi1 in colonic mucosa with and without inflammation, colonic polyps, colorectal carcinomas (CRC) and metastases as well as in CRC cell lines with respect to BRAF/KRAS mutation status and to find out whether introduction of KRAS mutation or stimulation with TNFalpha enhances Abi1 protein expression in CRC cells. Methodology/Principal Findings We immunohistochemically analyzed Abi1 protein expression in 126 tissue specimens from 95 patients and in 5 colorectal carcinoma cell lines with different mutation status by western immunoblotting. We found that Abi1 expression correlated positively with KRAS, but not BRAF mutation status in the examined tissue samples. Furthermore, Abi1 is overexpressed in inflammatory mucosa, sessile serrated polyps and adenomas, tubular adenomas, invasive CRC and CRC metastasis when compared to healthy mucosa and BRAF-mutated as well as KRAS wild-type hyperplastic polyps. Abi1 expression in carcinoma was independent of microsatellite stability of the tumor. Abi1 protein expression correlated with KRAS mutation in the analyzed CRC cell lines, and upregulation of Abi1 could be induced by TNFalpha treatment as well as transfection of wild-type CRC cells with mutant KRAS. The overexpression of Abi1 could be abolished by treatment with the PI3K-inhibitor Wortmannin after KRAS transfection. Conclusions/Significance Our results support a role for Abi1 as a downstream target of inflammatory response and adenomatous change as well as oncogenic KRAS mutation via PI3K, but not BRAF activation. Furthermore, they highlight a possible role for Abi1 as a marker for early KRAS mutation in hyperplastic polyps. Since the protein is a key player in actin dynamics, our data encourages further studies concerning the exact role of Abi1 in actin reorganization upon enhanced KRAS/PI3K signalling during colonic tumorigenesis.


BMC Cancer | 2015

The role of histologic subtype, p16INK4a expression, and presence of human papillomavirus DNA in penile squamous cell carcinoma

Julie Steinestel; Andreas Al Ghazal; Annette Arndt; Thomas J. Schnoeller; A.J. Schrader; Peter Moeller; Konrad Steinestel

BackgroundUp to 50% of penile squamous cell carcinomas (pSCC) develop in the context of high-risk human papillomavirus (HR-HPV) infection. Most of these tumours have been reported to show basaloid differentiation and overexpression of tumour suppressor protein p16INK4a. Whether HPV-triggered carcinogenesis in pSCC has an impact on tumour aggressiveness, however, is still subject to research.MethodsIn tissue specimens from 58 patients with surgically treated pSCC between 1995 and 2012, we performed p16INK4a immunohistochemistry and DNA extraction followed by HPV subtyping using a PCR-based approach. The results were correlated with histopathological and clinical parameters.Results90.4% of tumours were of conventional (keratinizing) subtype. HR-HPV DNA was detected in 29.3%, and a variety of p16INK4a staining patterns was observed in 58.6% of samples regardless of histologic subtype. Sensitivity of basaloid subtype to predict HR-HPV positivity was poor (11.8%). In contrast, sensitivity and specificity of p16INK4a staining to predict presence of HR-HPV DNA was 100% and 57%, respectively. By focussing on those samples with intense nuclear staining pattern for p16INK4a, specificity could be improved to 83%. Both expression of p16INK4a and presence of HR-HPV DNA, but not histologic grade, were inversely associated with pSCC tumour invasion (p = 0.01, p = 0.03, and p = 0.71). However, none of these correlated with nodal involvement or distant metastasis. In contrast to pathological tumour stage, the HR-HPV status, histologic grade, and p16INK4a positivity failed to predict cancer-specific survival.ConclusionsOur results confirm intense nuclear positivity for p16INK4a, rather than histologic subtype, as a good predictor for presence of HR-HPV DNA in pSCC. HR-HPV / p16INK4a positivity, independent of histological tumour grade, indicates a less aggressive local behaviour; however, its value as an independent prognostic indicator remains to be determined. Since local invasion can be judged without p16INK4a/HPV-detection on microscopic evaluation, our study argues against routine testing in the setting of pSCC.

Collaboration


Dive into the Konrad Steinestel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge