Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konstantin S. Leskov is active.

Publication


Featured researches published by Konstantin S. Leskov.


Nature Cell Biology | 2003

Ku70 suppresses the apoptotic translocation of Bax to mitochondria.

Motoshi Sawada; Weiyong Sun; Paulette L. Hayes; Konstantin S. Leskov; David A. Boothman; Shigemi Matsuyama

Bax induces mitochondrial-dependent cell death signals in mammalian cells. However, the mechanism of how Bax is kept inactive has remained unclear. Yeast-based functional screening of Bax inhibitors from mammalian cDNA libraries identified Ku70 as a new Bax suppressor. Bax-mediated apoptosis was suppressed by overexpression of Ku70 in mammalian cells, but enhanced by downregulation of Ku70. We found that Ku70 interacts with Bax, and that the carboxyl terminus of Ku70 and the amino terminus of Bax are required for this interaction. Bax is known to translocate from the cytosol to mitochondria when cells receive apoptotic stimuli. We found that Ku70 blocks the mitochondrial translocation of Bax. These results suggest that in addition to its previously recognized DNA repair activity in the nucleus, Ku70 has a cytoprotective function in the cytosol that controls the localization of Bax.


Journal of Biological Chemistry | 2003

Synthesis and Functional Analyses of Nuclear Clusterin, a Cell Death Protein

Konstantin S. Leskov; Dmitry Klokov; Jing Li; Timothy J. Kinsella; David A. Boothman

Nuclear clusterin (nCLU) is an ionizing radiation (IR)-inducible protein that binds Ku70, and triggers apoptosis when overexpressed in MCF-7 cells. We demonstrate that endogenous nCLU synthesis is a product of alternative splicing. Reverse transcriptase-PCR analyses revealed that exon II, containing the first AUG and encoding the endoplasmic reticulum-targeting peptide, was omitted. Exons I and III are spliced together placing a downstream AUG in exon III as the first available translation start site. This shorter mRNA produces the 49-kDa precursor nCLU protein. Ku70 binding activity was localized to the C-terminal coiled-coil domain of nCLU. Leucine residues 357, 358, and 361 of nCLU were necessary for Ku70-nCLU interaction. The N- and C-terminal coiled-coil domains of nCLU interacted with each other, suggesting that the protein could dimerize or fold. Mutation analyses indicate that the C-terminal NLS was functional in nCLU with the same contribution from N-terminal NLS. The C-terminal coiled-coil domain of nCLU was the minimal region required for Ku binding and apoptosis. MCF-7 cells show nuclear as well as cytoplasmic expression of GFP-nCLU in apoptotic cells. Cytosolic aggregation of GFP-nCLU was found in viable cells. These results indicate that an inactive precursor of nCLU exists in the cytoplasm of non-irradiated MCF-7 cells, translocates into the nucleus following IR, and induces apoptosis.


Oncogene | 2003

Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation

Tracy Criswell; Konstantin S. Leskov; Guangbin Luo; David A. Boothman

Over the past 15 years, a wealth of information has been published on transcripts and proteins ‘induced’ (requiring new protein synthesis) in mammalian cells after ionizing radiation (IR) exposure. Many of these studies have also attempted to elucidate the transcription factors that are ‘activated’ (i.e., not requiring de novo synthesis) in specific cells by IR. Unfortunately, all too often this information has been obtained using supralethal doses of IR, with investigators assuming that induction of these proteins, or activation of corresponding transcription factors, can be ‘extrapolated’ to low-dose IR exposures. This review focuses on what is known at the molecular level about transcription factors induced at clinically relevant (⩽2 Gy) doses of IR. A review of the literature demonstrates that extrapolation from high doses of IR to low doses of IR is inaccurate for most transcription factors and most IR-inducible transcripts/proteins, and that induction of transactivating proteins at low doses must be empirically derived. The signal transduction pathways stimulated after high versus low doses of IR, which act to transactivate certain transcription factors in the cell, will be discussed. To date, only three transcription factors appear to be responsive (i.e. activated) after physiological doses (doses wherein cells survive or recover) of IR. These are p53, nuclear factor kappa B(NF-κB), and the SP1-related retinoblastoma control proteins (RCPs). Clearly, more information on transcription factors and proteins induced in mammalian cells at clinically or environmentally relevant doses of IR is needed to understand the role of these stress responses in cancer susceptibility/resistance and radio-sensitivity/resistance mechanisms.


Journal of Biological Chemistry | 2005

Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor.

Tracy Criswell; Meghan Beman; Shinako Araki; Konstantin S. Leskov; Eva Cataldo; Lindsey D. Mayo; David A. Boothman

Secretory clusterin protein (sCLU) is a general genotoxic stress-induced, pro-survival gene product implicated in aging, obesity, heart disease, and cancer. However, the regulatory signal transduction processes that control sCLU expression remain undefined. Here, we report that induction of sCLU is delayed, peaking 72 h after low doses of ionizing radiation, and is dependent on the up-regulation of insulin-like growth factor-1 as well as phosphorylation-dependent activation of its receptor (IGF-1 and IGF-1R, respectively). Activated IGF-1R then stimulates the downstream Src-Mek-Erk signal transduction cascade to ultimately transactivate the early growth response-1 (Egr-1) transcription factor, required for sCLU expression. Thus, ionizing radiation exposure causes stress-induced activation of IGF-1R-Src-Mek-Erk-Egr-1 signaling that regulates the sCLU pro-survival cascade pathway, important for radiation resistance in cancer therapy.


Biochemical Society Transactions | 2007

Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides

Jose A. Gomez; Vivian Gama; Tomoyuki Yoshida; W. Sun; Paulette L. Hayes; Konstantin S. Leskov; David A. Boothman; Shigemi Matsuyama

We found that Ku70, a known DNA repair factor, has a novel function to bind and inhibit Bax (Bcl-2-associated X protein), a key mediator of apoptosis. Pentapeptides derived from the Bax-binding domain of Ku70 were cell-permeable and protected cells from Bax-mediated apoptosis. These pentapeptides were called BIPs (Bax-inhibiting peptides). BIPs may become a useful therapeutic tool to reduce cellular damage. We also generated BIP mutant pentapeptides that do not inhibit Bax, but retain their cell-penetrating activity. Since both BIPs and BIP mutants are cell-permeable, these peptides were designated CPP5s (cell-penetrating pentapeptides). Among the CPP5s discovered, VPTLK (BIP) and KLPVM (BIP mutant) were confirmed to possess protein transduction activity by examination of the delivery of GFP (green fluorescent protein) into cells by these peptides. The mechanism of cell penetration by CPP5s is not known. CPP5s enter the cell at 0 and 4 degrees C. In preliminary studies, various inhibitors of endocytosis and pinocytosis did not show any significant suppression of CPP5 cell entry. CPP5s have very low toxicity in vitro and in vivo and so may be useful tools in order to develop non-toxic drug-delivery technologies.


Cancer Biology & Therapy | 2008

Human neuroblastoma cells rapidly enter cell cycle arrest and apoptosis following exposure to C-28 derivatives of the synthetic triterpenoid CDDO

Jennifer L. Alabran; Adam Cheuk; Karen T. Liby; Michael B. Sporn; Javed Khan; John J. Letterio; Konstantin S. Leskov

Synthetic triterpenoids, such as 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and its derivatives, are an extremely potent class of new anti-cancer therapeutic agents, characterized by high anti-tumor potency and low toxicity to normal tissues. This report is the first to investigate the effects of C-28 derivatives of CDDO on 22 pediatric solid tumor cell lines, including neuroblastoma, rhabdomyosarcoma, osteosarcoma, and Ewings sarcoma. We determined IC50s in the range of 5 – 170 nM for inhibition of colony formation and DNA synthesis, and 110 – 630 nM for metabolic cell death and decrease in cell number, using the C-28 CDDO analogs, CDDO methyl ester (CDDO-Me), CDDO imidazolide (CDDO-Im), CDDO ethyl amide (CDDO-EA), CDDO trifluoroethyl amide (CDDO-TFEA), and CDDO diethylamide (CDDO-DE). After treatment of human neuroblastoma cells with CDDO-Me, cell cycle studies show depletion of the S-phase, while apoptosis studies show conformational activation and mitochondrial translocation of Bax protein, as well as activation of caspases -3 and -8. These data demonstrate the potential utility of CDDO analogs as promising novel therapeutic agents for high-risk pediatric solid tumors.


Oncogene | 2013

Low dose IR-induced IGF-1-sCLU expression: a p53-repressed expression cascade that interferes with TGFβ1 signaling to confer a pro-survival bystander effect

Dmitry Klokov; Konstantin S. Leskov; Shinako Araki; Yonglong Zou; Eva M. Goetz; Xiuquan Luo; David Willson; David A. Boothman

Inadvertent mammalian tissue exposures to low doses of ionizing radiation (IR) after radiation accidents, remediation of radioactive-contaminated areas, space travel or a dirty bomb represent an interesting trauma to an organism. Possible low-dose IR-induced bystander effects could impact our evaluation of human health effects, as cells within tissue are not equally damaged after doses of IR ⩽10 cGy. To understand tissue responses after low IR doses, we generated a reporter system using the human clusterin promoter fused to firefly luciferase (hCLUp-Luc). Secretory clusterin (sCLU), an extracellular molecular chaperone, induced by low doses of cytotoxic agents, clears cell debris. Low-dose IR (⩾2 cGy) exposure induced hCLUp-Luc activity with peak levels at 96 h, consistent with endogenous sCLU levels. As doses increased (⩾1 Gy), sCLU induction amplitudes increased and time-to-peak response decreased. sCLU expression was stimulated by insulin-like growth factor-1, but suppressed by p53. Responses in transgenic hCLUp-Luc reporter mice after low IR doses showed that specific tissues (that is, colon, spleen, mammary, thymus and bone marrow) of female mice induced hCLUp-Luc activity more than male mice after whole body (⩾10 cGy) irradiation. Tissue-specific, non-linear dose- and time-responses of hCLUp-Luc and endogenous sCLU levels were noted. Colon maintained homeostatic balance after 10 cGy. Bone marrow responded with delayed, but prolonged and elevated expression. Intraperitoneal administration of α-transforming growth factor (TGF)β1 (1D11), but not control (13C4) antibodies, immediately following IR exposure abrogated CLU induction responses. Induction in vivo also correlated with Smad signaling by activated TGFβ1 after IR. Mechanistically, media with elevated sCLU levels suppressed signaling, blocked apoptosis and increased survival of TGFβ1-exposed tumor or normal cells. Thus, sCLU is a pro-survival bystander factor that abrogates TGFβ1 signaling and most likely promotes wound healing.


Journal of Biological Chemistry | 2011

CRM1 Protein-mediated Regulation of Nuclear Clusterin (nCLU), an Ionizing Radiation-stimulated, Bax-dependent Pro-death Factor

Konstantin S. Leskov; Shinako Araki; John Paul Lavik; Jose A. Gomez; Vivian Gama; Efstathios S. Gonos; Ioannis P. Trougakos; Shigemi Matsuyama; David A. Boothman

Expression of the clusterin (CLU) gene results in the synthesis of a conventional secretory isoform set (pre- and mature secretory clusterin proteins, psCLU/sCLU), as well as another set of intracellular isoforms, appearing in the cytoplasm (pre-nuclear CLU, pnCLU) and in the nucleus as an ∼55-kDa mature nuclear clusterin (nCLU) form. These two isoform sets have opposing cell functions: pro-survival and pro-death, respectively. Although much is known about the regulation and function of sCLU as a pro-survival factor, the regulation and function of endogenous nCLU in cell death are relatively unexplored. Here, we show that depletion of endogenous nCLU protein using siRNA specific to its truncated mRNA increased clonogenic survival of ionizing radiation (IR)-exposed cells. nCLU-mediated apoptosis was Bax-dependent, and lethality correlated with accumulation of mature nCLU protein. nCLU accumulation was regulated by CRM1 because binding between CRM1 and nCLU proteins was significantly diminished by leptomycin B (LMB), and nuclear levels of nCLU protein were significantly enhanced by LMB and IR co-treatment. Moreover, LMB treatment significantly enhanced IR-induced nCLU-mediated cell death responses. Importantly, bax−/− and bax−/−/bak−/− double knock-out cells were resistant to nCLU-mediated cell death, whereas bak−/− or wild-type bax+/+/bak+/+ cells were hypersensitive. The regulation of nCLU by CRM1 nuclear export/import may explain recent clinical results showing that highly malignant tumors have lost the ability to accumulate nCLU levels, thereby avoiding growth inhibition and cell death.


Nucleic Acids Research | 2014

Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair

Julio C. Morales; Patricia Richard; Amy Rommel; Farjana Fattah; Edward A. Motea; Praveen L. Patidar; Ling Xiao; Konstantin S. Leskov; Shwu Yuan Wu; Walter N. Hittelman; Cheng Ming Chiang; James L. Manley; David A. Boothman

Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.


PLOS ONE | 2013

Roscovitine suppresses CD4+ T cells and T cell-mediated experimental uveitis.

Zili Zhang; Qi Liu; Konstantin S. Leskov; Xiumei Wu; Jie Duan; Gary L. Zhang; Mark Hall; James T. Rosenbaum

Background T cells are essential for the development of uveitis and other autoimmune diseases. After initial activation, CD4+ lymphocytes express the co-stimulatory molecule OX40 that plays an important role in T cell proliferation. Cyclin dependent kinase 2 (CdK2) plays a pivotal role in the cell cycle transition from G1 to S phase. In addition, recent research has implicated CdK2 in T cell activation. Thus, we sought to test the immunosuppressive effect of roscovitine, a potent CdK2 inhibitor, on CD4+ T cell activation, proliferation, and function. Design and Methods Mouse CD4+ T cells were activated by anti-CD3 and anti-CD28 antibodies. The expression of OX40, CD44, and CdK2 were analyzed by flow cytometry. In addition, cell cycle progression and apoptosis of control and roscovitine-treated T lymphocytes were measured by BrdU incorporation and annexin V assay, respectively. Furthermore, the immunoregulatory effect of roscovitine was evaluated in both ovalbumin-induced uveitis and experimental autoimmune uveitis (EAU) models. Results In this study, we found that T cell activation induced OX40 expression. Cell cycle analysis showed that more CD4+OX40+ cells entered S phase than OX40- T cells. Concurrently, CD4+OX40+ cells had a higher level of CdK2 expression. Roscovitine treatment blocked activated CD4+ cells from entering S phase. In addition, roscovitine not only reduced the viability of CD4+ lymphocytes but also suppressed T cell activation and cytokine production. Finally, roscovitine significantly attenuated the severity of T cell-dependent, OX40-enhanced uveitis. Conclusion These results implicate CdK2 in OX40-augmented T cell response and expansion. Furthermore, this study suggests that roscovitine is a novel, promising, therapeutic agent for treating T cell-mediated diseases such as uveitis.

Collaboration


Dive into the Konstantin S. Leskov's collaboration.

Top Co-Authors

Avatar

David A. Boothman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shinako Araki

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Tracy Criswell

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitry Klokov

Chalk River Laboratories

View shared research outputs
Top Co-Authors

Avatar

Shigemi Matsuyama

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Chin Rang Yang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David Willson

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Eva M. Goetz

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge