Konstantin V. Korotkov
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Konstantin V. Korotkov.
Nature Reviews Microbiology | 2012
Konstantin V. Korotkov; Maria Sandkvist; Wim G. J. Hol
Many Gram-negative bacteria use the sophisticated type II secretion system (T2SS) to translocate a wide range of proteins from the periplasm across the outer membrane. The inner-membrane platform of the T2SS is the nexus of the system and orchestrates the secretion process through its interactions with the periplasmic filamentous pseudopilus, the dodecameric outer-membrane complex and a cytoplasmic secretion ATPase. Here, recent structural and biochemical information is reviewed to describe our current knowledge of the biogenesis and architecture of the T2SS and its mechanism of action.
Structure | 2009
Konstantin V. Korotkov; Els Pardon; Jan Steyaert; Wim G. J. Hol
Secretins are among the largest bacterial outer membrane proteins known. Here we report the crystal structure of the periplasmic N-terminal domain of GspD (peri-GspD) from the type 2 secretion system (T2SS) secretin in complex with a nanobody, the VHH domain of a heavy-chain camelid antibody. Two different crystal forms contained the same compact peri-GspD:nanobody heterotetramer. The nanobody contacts peri-GspD mainly via CDR3 and framework residues. The peri-GspD structure reveals three subdomains, with the second and third subdomains exhibiting the KH fold which also occurs in ring-forming proteins of the type 3 secretion system. The first subdomain of GspD is related to domains in phage tail proteins and outer membrane TonB-dependent receptors. A dodecameric peri-GspD model is proposed in which a solvent-accessible beta strand of the first subdomain interacts with secreted proteins and/or T2SS partner proteins by beta strand complementation.
Journal of Biological Chemistry | 2000
Easwari Kumaraswamy; Andrey Malykh; Konstantin V. Korotkov; Sergei Kozyavkin; Yajun Hu; So Yeon Kwon; Mohamed E. Moustafa; Bradley A. Carlson; Marla J. Berry; Byeong Jae Lee; Dolph L. Hatfield; Alan M. Diamond; Vadim N. Gladyshev
Selenium has been implicated in cancer prevention, but the mechanism and possible involvement of selenoproteins in this process are not understood. To elucidate whether the 15-kDa selenoprotein may play a role in cancer etiology, the complete sequence of the human 15-kDa protein gene was determined, and various characteristics associated with expression of the protein were examined in normal and malignant cells and tissues. The 51-kilobase pair gene for the 15-kDa selenoprotein consisted of five exons and four introns and was localized on chromosome 1p31, a genetic locus commonly mutated or deleted in human cancers. Two stem-loop structures resembling selenocysteine insertion sequence elements were identified in the 3′-untranslated region of the gene, and only one of these was functional. Two alleles in the human 15-kDa protein gene were identified that differed by two single nucleotide polymorphic sites that occurred within the selenocysteine insertion sequence-like structures. These 3′-untranslated region polymorphisms resulted in changes in selenocysteine incorporation into protein and responded differently to selenium supplementation. Human and mouse 15-kDa selenoprotein genes manifested the highest level of expression in prostate, liver, kidney, testis, and brain, and the level of the selenoprotein was reduced substantially in a malignant prostate cell line and in hepatocarcinoma. The expression pattern of the 15-kDa protein in normal and malignant tissues, the occurrence of polymorphisms associated with protein expression, the role of selenium in differential regulation of polymorphisms, and the chromosomal location of the gene may be relevant to a role of this protein in cancer.
Trends in Biochemical Sciences | 2011
Konstantin V. Korotkov; Tamir Gonen; Wim G. J. Hol
Secretins form megadalton bacterial-membrane channels in at least four sophisticated multiprotein systems that are crucial for translocation of proteins and assembled fibers across the outer membrane of many species of bacteria. Secretin subunits contain multiple domains, which interact with numerous other proteins, including pilotins, secretion-system partner proteins, and exoproteins. Our understanding of the structure of secretins is rapidly progressing, and it is now recognized that features common to all secretins include a cylindrical arrangement of 12-15 subunits, a large periplasmic vestibule with a wide opening at one end and a periplasmic gate at the other. Secretins might also play a key role in the biogenesis of their cognate secretion systems.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Paulene M. Quigley; Konstantin V. Korotkov; François Baneyx; Wim G. J. Hol
Heat shock proteins (Hsps) play essential protective roles under stress conditions by preventing the formation of protein aggregates and degrading misfolded proteins. EcHsp31, the yedU (hchA) gene product, is a representative member of a family of chaperones that alleviates protein misfolding by interacting with early unfolding intermediates. The 1.6-Å crystal structure of the EcHsp31 dimer reveals a system of hydrophobic patches, canyons, and grooves, which may stabilize partially unfolded substrate. The presence of a well conserved, yet buried, triad in each two-domain subunit suggests a still unproven hydrolytic function of the protein. A flexible extended linker between the A and P domains may play a role in conformational flexibility and substrate binding. The α-β sandwich of the EcHsp31 monomer shows structural similarity to PhPI, a protease belonging to the DJ-1 superfamily. The structure-guided sequence alignment indicates that Hsp31 homologs can be divided in three classes based on variations in the P domain that dramatically affect both oligomerization and catalytic triad formation.
Biochimica et Biophysica Acta | 2014
Edith N. G. Houben; Konstantin V. Korotkov; Wilbert Bitter
Mycobacteria use type VII secretion (T7S) systems to secrete proteins across their complex cell envelope. Pathogenic mycobacteria, such as the notorious pathogen Mycobacterium tuberculosis, have up to five of these secretion systems, named ESX-1 to ESX-5. At least three of these secretion systems are essential for mycobacterial virulence and/or viability. Elucidating T7S is therefore essential to understand the success of M. tuberculosis and other pathogenic mycobacteria as pathogens, and could be instrumental to identify novel targets for drug- and vaccine-development. Recently, significant progress has been achieved in the identification of T7S substrates and a general secretion motif. In addition, a start has been made with unraveling the mechanism of secretion and the structural analysis of the different subunits. This review summarizes these recent findings, which are incorporated in a working model of this complex machinery. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Nature Structural & Molecular Biology | 2008
Konstantin V. Korotkov; Wim G. J. Hol
Gram-negative bacteria translocate various proteins including virulence factors across their outer membrane via type 2 secretion systems (T2SSs). T2SSs are thought to contain a pseudopilus, a subcomplex formed by one major and several minor pseudopilins. We report the crystal structure of the complex formed by three minor pseudopilins from enterotoxigenic Escherichia coli. The GspK–GspI–GspJ complex has quasihelical characteristics and an architecture consistent with a localization at the pseudopilus tip. The α-domain of GspK has a previously unobserved fold with an unexpected dinuclear metal binding site. The area surrounding its disulfide bridge is conserved and might interact with other T2SS components or with secreted proteins.
Nucleic Acids Research | 2005
Kalin Taskov; Charles E. Chapple; Gregory V. Kryukov; Sergi Castellano; Alexey V. Lobanov; Konstantin V. Korotkov; Roderic Guigó; Vadim N. Gladyshev
Selenocysteine (Sec) is co-translationally inserted into selenoproteins in response to codon UGA with the help of the selenocysteine insertion sequence (SECIS) element. The number of selenoproteins in animals varies, with humans having 25 and mice having 24 selenoproteins. To date, however, only one selenoprotein, thioredoxin reductase, has been detected in Caenorhabditis elegans, and this enzyme contains only one Sec. Here, we characterize the selenoproteomes of C.elegans and Caenorhabditis briggsae with three independent algorithms, one searching for pairs of homologous nematode SECIS elements, another searching for Cys- or Sec-containing homologs of potential nematode selenoprotein genes and the third identifying Sec-containing homologs of annotated nematode proteins. These methods suggest that thioredoxin reductase is the only Sec-containing protein in the C.elegans and C.briggsae genomes. In contrast, we identified additional selenoproteins in other nematodes. Assuming that Sec insertion mechanisms are conserved between nematodes and other eukaryotes, the data suggest that nematode selenoproteomes were reduced during evolution, and that in an extreme reduction case Sec insertion systems probably decode only a single UGA codon in C.elegans and C.briggsae genomes. In addition, all detected genes had a rare form of SECIS element containing a guanosine in place of a conserved adenosine present in most other SECIS structures, suggesting that in organisms with small selenoproteomes SECIS elements may change rapidly.
Journal of Structural Biology | 2009
Anita Y. Lam; Els Pardon; Konstantin V. Korotkov; Wim G. J. Hol; Jan Steyaert
Pseudopilins form the central pseudopilus of the sophisticated bacterial type 2 secretion systems. The crystallization of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus was greatly accelerated by the use of nanobodies, which are the smallest antigen-binding fragments derived from heavy-chain only camelid antibodies. Seven anti-EpsI:EpsJ nanobodies were generated and co-crystallization of EpsI:EpsJ nanobody complexes yielded several crystal forms very rapidly. In the structure solved, the nanobodies are arranged in planes throughout the crystal lattice, linking layers of EpsI:EpsJ heterodimers. The EpsI:EpsJ dimer observed confirms a right-handed architecture of the pseudopilus, but, compared to a previous structure of the EpsI:EpsJ heterodimer, EpsI differs 6 degrees in orientation with respect to EpsJ; one loop of EpsJ is shifted by approximately 5A due to interactions with the nanobody; and a second loop of EpsJ underwent a major change of 17A without contacts with the nanobody. Clearly, nanobodies accelerate dramatically the crystallization of recalcitrant protein complexes and can reveal conformational flexibility not observed before.
PLOS Pathogens | 2011
Konstantin V. Korotkov; Tanya L. Johnson; Michael G. Jobling; Jonathan N. Pruneda; Els Pardon; Annie Heroux; Stewart Turley; Jan Steyaert; Randall K. Holmes; Maria Sandkvist; Wim G. J. Hol
Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspCHR) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspCHR adopts an all-β topology. N-terminal β-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC–GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspCHR–GspDN0 interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed.