Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konstantina Spagou is active.

Publication


Featured researches published by Konstantina Spagou.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Systemic gut microbial modulation of bile acid metabolism in host tissue compartments

Jonathan R. Swann; Elizabeth J. Want; Florian M. Geier; Konstantina Spagou; Ian D. Wilson; James E. Sidaway; Jeremy K. Nicholson; Elaine Holmes

We elucidate the detailed effects of gut microbial depletion on the bile acid sub-metabolome of multiple body compartments (liver, kidney, heart, and blood plasma) in rats. We use a targeted ultra-performance liquid chromatography with time of flight mass-spectrometry assay to characterize the differential primary and secondary bile acid profiles in each tissue and show a major increase in the proportion of taurine-conjugated bile acids in germ-free (GF) and antibiotic (streptomycin/penicillin)-treated rats. Although conjugated bile acids dominate the hepatic profile (97.0 ± 1.5%) of conventional animals, unconjugated bile acids comprise the largest proportion of the total measured bile acid profile in kidney (60.0 ± 10.4%) and heart (53.0 ± 18.5%) tissues. In contrast, in the GF animal, taurine-conjugated bile acids (especially taurocholic acid and tauro-β-muricholic acid) dominated the bile acid profiles (liver: 96.0 ± 14.5%; kidney: 96 ± 1%; heart: 93 ± 1%; plasma: 93.0 ± 2.3%), with unconjugated and glycine-conjugated species representing a small proportion of the profile. Higher free taurine levels were found in GF livers compared with the conventional liver (5.1-fold; P < 0.001). Bile acid diversity was also lower in GF and antibiotic-treated tissues compared with conventional animals. Because bile acids perform important signaling functions, it is clear that these chemical communication networks are strongly influenced by microbial activities or modulation, as evidenced by farnesoid X receptor-regulated pathway transcripts. The presence of specific microbial bile acid co-metabolite patterns in peripheral tissues (including heart and kidney) implies a broader signaling role for these compounds and emphasizes the extent of symbiotic microbial influences in mammalian homeostasis.


Journal of Separation Science | 2010

Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies

Konstantina Spagou; Helen Tsoukali; Nikolaos Raikos; Helen G. Gika; Ian D. Wilson; Georgios Theodoridis

Hydrophilic interaction chromatography (HILIC) is a relatively recently introduced mode of liquid-phase separations. Recently, HILIC has been used for coupling to MS in metabonomic/metabolomic studies to provide a complementary tool to the widely used reversed-phase (RP) chromatographic separations. The combination of HILIC with MS detection covers a number of polar metabolites that are typically nonretained in RPLC-mode separations and thus enlarging the number of detected analytes. This way of metabolite profiling thus provides more comprehensive metabolome coverage than using RP chromatography alone. This review describes the applications and the utility of HILIC-MS in metabolomic/metabonomic studies and highlights certain characteristic examples in the life and plant-food sciences.


Analytical Chemistry | 2011

HILIC-UPLC-MS for Exploratory Urinary Metabolic Profiling in Toxicological Studies

Konstantina Spagou; Ian D. Wilson; Perrine Masson; Georgios Theodoridis; Nikolaos Raikos; Muireann Coen; Elaine Holmes; John C. Lindon; Robert S. Plumb; Jeremy K. Nicholson; Elizabeth J. Want

Hydrophilic interaction ultra performance liquid chromatography (HILIC-UPLC) permits the analysis of highly polar metabolites, providing complementary information to reversed-phase (RP) chromatography. HILIC-UPLC-TOF-MS was investigated for the global metabolic profiling of rat urine samples generated in an experimental hepatotoxicity study of galactosamine (galN) and the concomitant investigation of the protective effect of glycine. Within-run repeatability and stability over a large sample batch (>200 samples, 60 h run-time) was assessed through the repeat analysis of a quality control sample. Following system equilibration, excellent repeatability was observed in terms of retention time (CV < 1.7%), signal intensity (CV < 14%), and mass variability (<0.005 amu), providing a good measure of reproducibility. Classification of urinary metabolic profiles according to treatment was observed, with significant changes in specific metabolites after galN exposure, including increased urocanic acid, N-acetylglucosamine, and decreased 2-oxoglutarate. A novel finding from this HILIC-UPLC-MS approach was elevated urinary tyramine in galN-treated rats, reflecting disturbed amino acid metabolism. These results show HILIC-UPLC-MS to be a promising method for global metabolic profiling, demonstrating high within-run repeatability, even over an extended run time. Retention of polar endogenous analytes and xenobiotic metabolites was improved compared with RP studies, including galN, N-acetylglucosamine, oxoglutarate, and urocanic acid, enhancing metabolome coverage and potentially improving biomarker discovery.


Analytical Chemistry | 2012

Optimizing the Use of Quality Control Samples for Signal Drift Correction in Large-Scale Urine Metabolic Profiling Studies

Muhammad Anas Kamleh; Timothy M. D. Ebbels; Konstantina Spagou; Perrine Masson; Elizabeth J. Want

The evident importance of metabolic profiling for biomarker discovery and hypothesis generation has led to interest in incorporating this technique into large-scale studies, e.g., clinical and molecular phenotyping studies. Nevertheless, these lengthy studies mandate the use of analytical methods with proven reproducibility. An integrated experimental plan for LC-MS profiling of urine, involving sample sequence design and postacquisition correction routines, has been developed. This plan is based on the optimization of the frequency of analyzing identical quality control (QC) specimen injections and using the QC intensities of each metabolite feature to construct a correction trace for all the samples. The QC-based methods were tested against other current correction practices, such as total intensity normalization. The evaluation was based on the reproducibility obtained from technical replicates of 46 samples and showed the feature-based signal correction (FBSC) methods to be superior to other methods, resulting in ~1000 and 600 metabolite features with coefficient of variation (CV) < 15% within and between two blocks, respectively. Additionally, the required frequency of QC sample injection was investigated and the best signal correction results were achieved with at least one QC injection every 2 h of urine sample injections (n = 10). Higher rates of QC injections (1 QC/h) resulted in slightly better correction but at the expense of longer total analysis time.


Analytical Chemistry | 2011

Technical and biological variation in UPLC-MS-based untargeted metabolic profiling of liver extracts: application in an experimental toxicity study on galactosamine.

Perrine Masson; Konstantina Spagou; Jeremy K. Nicholson; Elizabeth J. Want

The relative importance of technical versus bio-logical variation in UPLC-MS liver metabolic profiling studies was assessed on liver samples collected as part of an in vivo hepatotoxicity study. Biological variability within and between two treatment groups (three rats treated with galactosamine and three with galactosamine+uridine) was compared with sampling/extraction variability (three portions extracted from each rat liver section) and UPLC-MS platform variability (triplicate injections of each extract) for aqueous and organic extracts. The impact of scaling on error measurement was investigated on replicate injections of a quality control sample, and consequently started log-transformation was used to stabilize the variance across the ion intensity range. For aqueous extracts, technical variability was two to four times lower than within group interanimal variability. Similar results were obtained for organic extracts for the galactosamine group, sampling/extraction variability being more elevated in the galactosamine+uridine group. For both extract types, differences between treatment groups were the principal source of observed variation, and triplicate injections clustered closely in PCA plots and in HCA dendrograms, indicating small instrument variability compared to observed biological variation. This protocol can be applied to investigate differences in liver metabolic profiles between animal groups in toxicology studies and clinical investigations of liver disease.


Molecular Oncology | 2014

Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry (MALDI-MSI) reveals novel cancer-associated field effects

Reza Mirnezami; Konstantina Spagou; Panagiotis A. Vorkas; Matthew R. Lewis; James Kinross; Elizabeth J. Want; H. Shion; Robert Goldin; Ara Darzi; Zoltan Takats; Elaine Holmes; Olivier Cloarec; Jeremy K. Nicholson

Matrix‐assisted laser desorption ionisation imaging mass spectrometry (MALDI‐MSI) is a rapidly advancing technique for intact tissue analysis that allows simultaneous localisation and quantification of biomolecules in different histological regions of interest. This approach can potentially offer novel insights into tumour microenvironmental (TME) biochemistry. In this study we employed MALDI‐MSI to evaluate fresh frozen sections of colorectal cancer (CRC) tissue and adjacent healthy mucosa obtained from 12 consenting patients undergoing surgery for confirmed CRC. Specifically, we sought to address three objectives: (1) To identify biochemical differences between different morphological regions within the CRC TME; (2) To characterise the biochemical differences between cancerous and healthy colorectal tissue using MALDI‐MSI; (3) To determine whether MALDI‐MSI profiling of tumour‐adjacent tissue can identify novel metabolic ‘field effects’ associated with cancer. Our results demonstrate that CRC tissue harbours characteristic phospholipid signatures compared with healthy tissue and additionally, different tissue regions within the CRC TME reveal distinct biochemical profiles. Furthermore we observed biochemical differences between tumour‐adjacent and tumour‐remote healthy mucosa. We have referred to this ‘field effect’, exhibited by the tumour locale, as cancer‐adjacent metaboplasia (CAM) and this finding builds on the established concept of field cancerisation.


Journal of Proteome Research | 2014

Bariatric Surgery Modulates Circulating and Cardiac Metabolites

Hutan Ashrafian; Jia V. Li; Konstantina Spagou; Leanne Harling; Perrine Masson; Ara Darzi; Jeremy K. Nicholson; Elaine Holmes; Thanos Athanasiou

Bariatric procedures such as the Roux-en-Y gastric bypass (RYGB) operation offer profound metabolic enhancement in addition to their well-recognized weight loss effects. They are associated with significant reduction in cardiovascular disease risk and mortality, which suggests a surgical modification on cardiac metabolism. Metabolic phenotyping of the cardiac tissue and plasma postsurgery may give insight into cardioprotective mechanisms. The aim of the study was to compare the metabolic profiles of plasma and heart tissue extracts from RYGB- and sham-operated Wistar rats to identify the systemic and cardiac signature of metabolic surgery. A total of 27 male Wistar rats were housed individually for a week and subsequently underwent RYGB (n = 13) or sham (n = 14) operation. At week 8 postoperation, a total of 27 plasma samples and 16 heart tissue samples (8 RYGB; 8 Sham) were collected from animals and analyzed using (1)H nuclear magnetic resonance (NMR) spectroscopy and ultra performance liquid chromatography (UPLC-MS) to characterize the global metabolite perturbation induced by RYGB operation. Plasma bile acids, phosphocholines, amino acids, energy-related metabolites, nucleosides and amine metabolites, and cardiac glycogen and amino acids were found to be altered in the RYGB operated group. Correlation networks were used to identify metabolite association. The metabolic phenotype of this bariatric surgical model inferred systematic change in both myocardial and systemic activity post surgery. The altered metabolic profile following bariatric surgery reflects an enhancement of cardiac energy metabolism through TCA cycle intermediates, cardiorenal protective activity, and biochemical caloric restriction. These surgically induced metabolic shifts identify some of the potential mechanisms that contribute toward bariatric cardioprotection through gut microbiota ecological fluxes and an enterocardiac axis to shield against metabolic syndrome of cardiac dysfunction.


Journal of Proteome Research | 2013

Microbial−Mammalian Cometabolites Dominate the Age-associated Urinary Metabolic Phenotype in Taiwanese and American Populations

Jonathan R. Swann; Konstantina Spagou; Matthew R. Lewis; Jeremy K. Nicholson; Dana A. Glei; Teresa E. Seeman; Christopher L. Coe; Noreen Goldman; Carol D. Ryff; Maxine Weinstein; Elaine Holmes

Understanding the metabolic processes associated with aging is key to developing effective management and treatment strategies for age-related diseases. We investigated the metabolic profiles associated with age in a Taiwanese and an American population. ¹H NMR spectral profiles were generated for urine specimens collected from the Taiwanese Social Environment and Biomarkers of Aging Study (SEBAS; n = 857; age 54-91 years) and the Mid-Life in the USA study (MIDUS II; n = 1148; age 35-86 years). Multivariate and univariate linear projection methods revealed some common age-related characteristics in urinary metabolite profiles in the American and Taiwanese populations, as well as some distinctive features. In both cases, two metabolites--4-cresyl sulfate (4CS) and phenylacetylglutamine (PAG)--were positively associated with age. In addition, creatine and β-hydroxy-β-methylbutyrate (HMB) were negatively correlated with age in both populations (p < 4 × 10⁻⁶). These age-associated gradients in creatine and HMB reflect decreasing muscle mass with age. The systematic increase in PAG and 4CS was confirmed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). Both are products of concerted microbial-mammalian host cometabolism and indicate an age-related association with the balance of host-microbiome metabolism.


Journal of Chromatography B | 2011

A GC–MS metabolic profiling study of plasma samples from mice on low- and high-fat diets☆

Konstantina Spagou; Georgios Theodoridis; Ian D. Wilson; Nikolaos Raikos; Peter Greaves; Richard E. Edwards; Barbara M. Nolan; Maria I. Klapa

Metabolic profiling of biofluids, based on the quantitative analysis of the concentration profile of their free low molecular mass metabolites, has been playing increasing role employed as a means to gain understanding of the progression of metabolic disorders, including obesity. Chromatographic methods coupled with mass spectrometry have been established as a strategy for metabolic profiling. Among these, GC-MS, targeting mainly the primary metabolism intermediates, offers high sensitivity, good peak resolution and extensive databases. However, the derivatization step required for many involatile metabolites necessitates specific data validation, normalization and analysis protocols to ensure accurate and reproducible performance. In this study, the GC-MS metabolic profiles of plasma samples from mice maintained on 12- or 15-month long low (10 kcal%) or high (60 kcal%) fat diets were obtained. The profiles of the trimethylsilyl(TMS)-methoxime(MeOx) derivatives of the free polar metabolites were acquired through GC-(ion trap)MS, using [U-(13)C]-glucose as the internal standard. After the application of a recently developed data correction and normalization/filtering protocol for GC-MS metabolomic datasets, the profiles of 48 out of the 77 detected metabolites were used in multivariate statistical analysis. Data mining suggested a decrease in the activity of the energy metabolism with age. In addition, the metabolic profiles indicated the presence of subpopulations with different physiology within the high- and low-fat diet mice, which correlated well with the difference in body weight among the animals and current knowledge about hyperglycemic conditions.


Forensic Science International | 2012

Determination of venlafaxine in post-mortem whole blood by HS-SPME and GC-NPD §

O. Mastrogianni; Georgios Theodoridis; Konstantina Spagou; D. Violante; T. Henriques; A. Pouliopoulos; K. Psaroulis; Heleni Tsoukali; Nikolaos Raikos

Venlafaxine is a phenethylamine derivative widely prescribed for the treatment of depression which inhibits both serotonin and norepinephrine reuptake (SNRI). In treatment with antidepressants of patient with depression and other psychiatric disorders there is also increased risk of suicidal thought and behaviour. Several lethal intoxications involving venlafaxine usually among psychotic patients have been reported in the literature. Sample preparation is of the greatest significance for a successful toxicological analysis. The development of simple, effective and rapid extraction procedures of drugs from post-mortem biological samples is a challenge. Headspace-solid phase microextraction (HS-SPME) offers significant advantages such as simplicity, low cost, compatibility with analytical systems, automation and solvent-free extraction. The aim of our work was the optimization of a HS-SPME procedure for the determination of venlafaxine in post-mortem biological samples by gas chromatography (GC) with nitrogen-phosphorous detection (NPD). Venlafaxine was extracted on 100 μm Polydimethylsiloxone Coating-Red (PDMS) SPME fiber and determined by GC-NPD. Salt addition, extraction temperature, preheating and extraction time were optimized to enhance the recovery of the extraction from aqueous solution spiked with venlafaxine. Finally the developed procedure was applied to post-mortem biological samples of a fatally poisoned woman by venlafaxine. The drug was quantified in post-mortem blood gastric and oesophagus contents of the deceased woman. A simple and rapid procedure using HS-SPME was developed for sample preparation of venlafaxine in post-mortem biological samples prior to GC-NPD determination. Validation data was satisfactory, thus enabling application in the toxicological analysis of forensic samples.

Collaboration


Dive into the Konstantina Spagou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolaos Raikos

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgios Theodoridis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge