Konstantina Stathopoulou
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Konstantina Stathopoulou.
Circulation Research | 2013
Mélanie Abonnenc; Adam Nabeebaccus; Ursula Mayr; Javier Barallobre-Barreiro; Xuebin Dong; Friederike Cuello; Sumon Sur; Ignat Drozdov; Sarah R. Langley; Ruifang Lu; Konstantina Stathopoulou; Athanasios Didangelos; Xiaoke Yin; Wolfram-Hubertus Zimmermann; Ajay M. Shah; Anna Zampetaki; Manuel Mayr
Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-&bgr;. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (&agr;-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease.Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-β. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (α-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease. # Novelty and Significance {#article-title-44}
Circulation Research | 2012
Robert S. Haworth; Konstantina Stathopoulou; Alexandra J. Candasamy; Metin Avkiran
Rationale: Myocyte enhancer factor 2 (MEF2) transcription factors drive the genetic reprogramming that precipitates pathological cardiac hypertrophy and remodeling. Class II histone deacetylase (HDAC) isoforms, such as HDAC5, act as signal-responsive repressors of MEF2 activity in cardiac myocytes and their nuclear export provides a key mechanism for the neurohormonal induction of such activity. Objective: To delineate the mechanism(s) through which 2 clinically relevant neurohormonal stimuli, endothelin-1 (ET1) and the &bgr;-adrenergic receptor (&bgr;-AR) agonist isoproterenol (ISO), may regulate HDAC5 nuclear localization in adult cardiac myocytes. Methods and Results: ET1 induced HDAC5 phosphorylation and nuclear export in ventricular myocytes from the adult rat heart. Use of a novel, highly selective protein kinase D (PKD) inhibitor and a nonphosphorylatable HDAC5 mutant revealed that PKD-mediated phosphorylation was necessary for ET1-induced HDAC5 nuclear export. In contrast, ISO reduced HDAC5 phosphorylation in the presence or absence of ET1 but still induced HDAC5 nuclear export. ISO-induced HDAC5 nuclear export occurred through a &bgr;1-AR–mediated oxidative process that was independent of PKD, protein kinase A, and Ca2+/calmodulin-dependent kinase II activities. Although ET1 and ISO shared a similar ability to induce HDAC5 nuclear export, albeit through distinct phosphorylation-dependent versus phosphorylation-independent mechanisms, ISO induced a significantly greater increase in MEF2 activity. Conclusions: PKD-mediated HDAC5 phosphorylation and nuclear export are unlikely to be of major importance in regulating MEF2-driven cardiac remodeling in the presence of sympathetic activity with intact &bgr;1-AR signaling, which would not only counteract HDAC5 phosphorylation but also induce HDAC5 nuclear export through a novel phosphorylation-independent, oxidation-mediated mechanism. Inhibition of this mechanism may contribute to the therapeutic efficacy of &bgr;1-AR antagonists in heart failure.
Gene | 2015
Lucie Carrier; Giulia Mearini; Konstantina Stathopoulou; Friederike Cuello
More than 350 individual MYPBC3 mutations have been identified in patients with inherited hypertrophic cardiomyopathy (HCM), thus representing 40–50% of all HCM mutations, making it the most frequently mutated gene in HCM. HCM is considered a disease of the sarcomere and is characterized by left ventricular hypertrophy, myocyte disarray and diastolic dysfunction. MYBPC3 encodes for the thick filament associated protein cardiac myosin-binding protein C (cMyBP-C), a signaling node in cardiac myocytes that contributes to the maintenance of sarcomeric structure and regulation of contraction and relaxation. This review aims to provide a succinct overview of how mutations in MYBPC3 are considered to affect the physiological function of cMyBP-C, thus causing the deleterious consequences observed inHCM patients. Importantly, recent advances to causally treat HCM by repairing MYBPC3 mutations by gene therapy are discussed here, providing a promising alternative to heart transplantation for patients with a fatal form of neonatal cardiomyopathy due to bi-allelic truncating MYBPC3 mutations.
Cardiovascular Research | 2016
Frederik Flenner; Felix W. Friedrich; Nele Ungeheuer; Torsten Christ; Birgit Geertz; Silke Reischmann; Stefan Wagner; Konstantina Stathopoulou; Klaus-Dieter Söhren; Florian Weinberger; Edzard Schwedhelm; Friederike Cuello; Lars S. Maier; Thomas Eschenhagen; Lucie Carrier
AIMS Hypertrophic cardiomyopathy (HCM) is often accompanied by increased myofilament Ca(2+) sensitivity and diastolic dysfunction. Recent findings indicate increased late Na(+) current density in human HCM cardiomyocytes. Since ranolazine has the potential to decrease myofilament Ca(2+) sensitivity and late Na(+) current, we investigated its effects in an Mybpc3-targeted knock-in (KI) mouse model of HCM. METHODS AND RESULTS Unloaded sarcomere shortening and Ca(2+) transients were measured in KI and wild-type (WT) cardiomyocytes. Measurements were performed at baseline (1 Hz) and under increased workload (30 nM isoprenaline (ISO), 5 Hz) in the absence or presence of 10 µM ranolazine. KI myocytes showed shorter diastolic sarcomere length at baseline, stronger inotropic response to ISO, and drastic drop of diastolic sarcomere length under increased workload. Ranolazine attenuated ISO responses in WT and KI cells and prevented workload-induced diastolic failure in KI. Late Na(+) current density was diminished and insensitive to ranolazine in KI cardiomyocytes. Ca(2+) sensitivity of skinned KI trabeculae was slightly decreased by ranolazine. Phosphorylation analysis of cAMP-dependent protein kinase A-target proteins and ISO concentration-response measurements on muscle strips indicated antagonism at β-adrenoceptors with 10 µM ranolazine shifting the ISO response by 0.6 log units. Six-month treatment with ranolazine (plasma level >20 µM) demonstrated a β-blocking effect, but did not reverse cardiac hypertrophy or dysfunction in KI mice. CONCLUSION Ranolazine improved tolerance to high workload in mouse HCM cardiomyocytes, not by blocking late Na(+) current, but by antagonizing β-adrenergic stimulation and slightly desensitizing myofilaments to Ca(2+). This effect did not translate in therapeutic efficacy in vivo.
Pflügers Archiv: European Journal of Physiology | 2014
Kristina Lorenz; Konstantina Stathopoulou; Evelyn Schmid; Petra Eder; Friederike Cuello
Among the myriad of molecular alterations occurring in heart failure development, aggravation of the disease is often attributed to global or local changes in protein kinase activity, thus making protein kinases attractive targets for therapeutic intervention. Since protein kinases do not only have maladaptive roles, but also contribute to the physiological integrity of cells, it is a challenging task to circumvent undesired inhibition of protein kinase activity. Identification of posttranslational modifications and/or protein-protein interactions that are exclusively apparent under pathophysiological conditions provides exciting information for alternative non-kinase inhibitory treatment strategies that eliminate maladaptive functions of a protein kinase, but preserve the beneficial ones. Here, we focus on the disease-specific regulation of a number of protein kinases, namely, Ca2+/calmodulin-dependent protein kinase II isoform δ (CaMKIIδ), G protein-coupled receptor kinase 2 (GRK2), extracellular signal-regulated kinase 1 and 2 (ERK1/2), protein kinase D (PKD) and protein kinase C isoform β2 (PKCβ2), which are embedded in complex signal transduction pathways implicated in heart failure development, and discuss potential avenues for novel treatment strategies to combat heart disease.
The FASEB Journal | 2016
Konstantina Stathopoulou; Ilka Wittig; Juliana Heidler; Angelika Piasecki; Florian Richter; Simon Diering; Jolanda van der Velden; Friedrich Buck; Sonia Donzelli; Ewald Schröder; Paul J.M. Wijnker; Niels Voigt; Dobromir Dobrev; Sakthivel Sadayappan; Thomas Eschenhagen; Lucie Carrier; Philip Eaton; Friederike Cuello
Cardiac myosin‐binding protein C (cMyBP‐C) regulates actin‐myosin interaction and thereby cardiac myocyte contraction and relaxation. This physiologic function is regulated by cMyBP‐C phosphorylation. In our study, reduced site‐specific cMyBP‐C phosphorylation coincided with increased S‐glutathiolation in ventricular tissue from patients with dilated or ischemic cardiomyopathy compared to nonfailing donors. We used redox proteomics, to identify constitutive and disease‐specific S‐glutathiolation sites in cMyBP‐C in donor and patient samples, respectively. Among those, a cysteine cluster in the vicinity of the regulatory phosphorylation sites within the myosin S2 interaction domain C1‐M‐C2 was identified and showed enhanced S‐glutathiolation in patients. In vitro S‐glutathiolation of recombinant cMyBP‐C C1‐M‐C2 occurred predominantly at Cys249, which attenuated phosphorylation by protein kinases. Exposure to glutathione disulfide induced cMyBP‐C S‐glutathiolation, which functionally decelerated the kinetics of Ca2+‐activated force development in ventricular myocytes from wild‐type, but not those from Mybpc3‐targeted knockout mice. These oxidation events abrogate protein kinase‐mediated phosphorylation of cMyBP‐C and therefore potentially contribute to the reduction of its phosphorylation and the contractile dysfunction observed in human heart failure.—Stathopoulou, K., Wittig, I., Heidler, J., Piasecki, A., Richter, F., Diering, S., van der Velden, J., Buck, F., Donzelli, S., Schröder, E., Wijnker, P. J. M., Voigt, N., Dobrev, D., Sadayappan, S., Eschenhagen, T., Carrier, L., Eaton, P., Cuello, F. S‐glutathiolation impairs phosphoregulation and function of cardiac myosin‐binding protein C in human heart failure. FASEB J. 30, 1849–1864 (2016). www.fasebj.org
Biochemical Journal | 2014
Konstantina Stathopoulou; Friederike Cuello; Alexandra J. Candasamy; Elizabeth M. Kemp; Elisabeth Ehler; Robert S. Haworth; Metin Avkiran
PKD (protein kinase D) is a serine/threonine kinase implicated in multiple cardiac roles, including the phosphorylation of the class II HDAC5 (histone deacetylase isoform 5) and thereby de-repression of MEF2 (myocyte enhancer factor 2) transcription factor activity. In the present study we identify FHL1 (four-and-a-half LIM domains protein 1) and FHL2 as novel binding partners for PKD in cardiac myocytes. This was confirmed by pull-down assays using recombinant GST-fused proteins and heterologously or endogenously expressed PKD in adult rat ventricular myocytes or NRVMs (neonatal rat ventricular myocytes) respectively, and by co-immunoprecipitation of FHL1 and FHL2 with GFP–PKD1 fusion protein expressed in NRVMs. In vitro kinase assays showed that neither FHL1 nor FHL2 is a PKD1 substrate. Selective knockdown of FHL1 expression in NRVMs significantly inhibited PKD activation and HDAC5 phosphorylation in response to endothelin 1, but not to the α1-adrenoceptor agonist phenylephrine. In contrast, selective knockdown of FHL2 expression caused a significant reduction in PKD activation and HDAC5 phosphorylation in response to both stimuli. Interestingly, neither intervention affected MEF2 activation by endothelin 1 or phenylephrine. We conclude that FHL1 and FHL2 are novel cardiac PKD partners, which differentially facilitate PKD activation and HDAC5 phosphorylation by distinct neurohormonal stimuli, but are unlikely to regulate MEF2-driven transcriptional reprogramming.
Circulation Research | 2013
Mélanie Abonnenc; Adam Nabeebaccus; Ursula Mayr; Javier Barallobre-Barreiro; Xuebin Dong; Friederike Cuello; Sumon Sur; Ignat Drozdov; Sarah R. Langley; Ruifang Lu; Konstantina Stathopoulou; Athanasios Didangelos; Xiaoke Yin; Wolfram-Hubertus Zimmermann; Ajay M. Shah; Anna Zampetaki; Manuel Mayr
Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-&bgr;. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (&agr;-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease.Rationale: MicroRNAs (miRNAs), in particular miR-29b and miR-30c, have been implicated as important regulators of cardiac fibrosis. Objective: To perform a proteomics comparison of miRNA effects on extracellular matrix secretion by cardiac fibroblasts. Methods and Results: Mouse cardiac fibroblasts were transfected with pre-/anti-miR of miR-29b and miR-30c, and their conditioned medium was analyzed by mass spectrometry. miR-29b targeted a cadre of proteins involved in fibrosis, including multiple collagens, matrix metalloproteinases, and leukemia inhibitory factor, insulin-like growth factor 1, and pentraxin 3, 3 predicted targets of miR-29b. miR-29b also attenuated the cardiac fibroblast response to transforming growth factor-β. In contrast, miR-30c had little effect on extracellular matrix production but opposite effects regarding leukemia inhibitory factor and insulin-like growth factor 1. Both miRNAs indirectly affected cardiac myocytes. On transfection with pre–miR-29b, the conditioned medium of cardiac fibroblasts lost its ability to support adhesion of rat ventricular myocytes and led to a significant reduction of cardiac myocyte proteins (α-actinin, cardiac myosin-binding protein C, and cardiac troponin I). Similarly, cardiomyocytes derived from mouse embryonic stem cells atrophied under pre–miR-29 conditioned medium, whereas pre–miR-30c conditioned medium had a prohypertrophic effect. Levels of miR-29a, miR-29c, and miR-30c, but not miR-29b, were significantly reduced in a mouse model of pathological but not physiological hypertrophy. Treatment with antagomiRs to miR-29b induced excess fibrosis after aortic constriction without overt deterioration in cardiac function. Conclusions: Our proteomic analysis revealed novel molecular targets of miRNAs that are linked to a fibrogenic cardiac phenotype. Such comprehensive screening methods are essential to define the concerted actions of miRNAs in cardiovascular disease. # Novelty and Significance {#article-title-44}
Toxicological Sciences | 2017
Ingra Mannhardt; Alexandra Eder; Berengere Dumotier; Maksymilian Prondzynski; Elisabeth Krämer; Martin Traebert; Klaus-Dieter Söhren; Frederik Flenner; Konstantina Stathopoulou; Marc D. Lemoine; Lucie Carrier; Torsten Christ; Thomas Eschenhagen; Arne Hansen
Abstract Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) may serve as a new assay for drug testing in a human context, but their validity particularly for the evaluation of inotropic drug effects remains unclear. In this blinded analysis, we compared the effects of 10 indicator compounds with known inotropic effects in electrically stimulated (1.5 Hz) hiPSC-CM-derived 3-dimensional engineered heart tissue (EHT) and human atrial trabeculae (hAT). Human EHTs were prepared from iCell hiPSC-CM, hAT obtained at routine heart surgery. Mean intra-batch variation coefficient in baseline force measurement was 17% for EHT and 49% for hAT. The PDE-inhibitor milrinone did not affect EHT contraction force, but increased force in hAT. Citalopram (selective serotonin reuptake inhibitor), nifedipine (LTCC-blocker) and lidocaine (Na+ channel-blocker) had negative inotropic effects on EHT and hAT. Formoterol (beta-2 agonist) had positive lusitropic but no inotropic effect in EHT, and positive clinotropic, lusitropic, and inotropic effects in hAT. Tacrolimus (calcineurin-inhibitor) had a negative inotropic effect in EHTs, but no effect in hAT. Digoxin (Na+-K+-ATPase-inhibitor) showed a positive inotropic effect only in EHTs, but no effect in hAT probably due to short incubation time. Ryanodine (ryanodine receptor-inhibitor) reduced contraction force in both models. Rolipram and acetylsalicylic acid showed noninterpretable results in hAT. Contraction amplitude and kinetics were more stable over time and less variable in hiPSC-EHTs than hAT. HiPSC-EHT faithfully detected cAMP-dependent and -independent positive and negative inotropic effects, but limited beta-2 adrenergic or PDE3 effects, compatible with an immature CM phenotype.
Scientific Reports | 2017
Sonia Donzelli; Mara Goetz; Kjestine Schmidt; Markus Wolters; Konstantina Stathopoulou; Simon Diering; Oleksandra Prysyazhna; Volkan Polat; Jenna Scotcher; Christian Dees; Hariharan Subramanian; Elke Butt; Alisa Kamynina; Sophie Schobesberger; S. Bruce King; Viacheslav O. Nikolaev; Cor de Wit; Lars I. Leichert; Robert Feil; Philip Eaton; Friederike Cuello
Despite the mechanisms for endogenous nitroxyl (HNO) production and action being incompletely understood, pharmacological donors show broad therapeutic promise and are in clinical trials. Mass spectrometry and site-directed mutagenesis showed that chemically distinct HNO donors 1-nitrosocyclohexyl acetate or Angeli’s salt induced disulfides within cGMP-dependent protein kinase I-alpha (PKGIα), an interdisulfide between Cys42 of the two identical subunits of the kinase and a previously unobserved intradisulfide between Cys117 and Cys195 in the high affinity cGMP-binding site. Kinase activity was monitored in cells transfected with wildtype (WT), Cys42Ser or Cys117/195Ser PKGIα that cannot form the inter- or intradisulfide, respectively. HNO enhanced WT kinase activity, an effect significantly attenuated in inter- or intradisulfide-deficient PKGIα. To investigate whether the intradisulfide modulates cGMP binding, real-time imaging was performed in vascular smooth muscle cells expressing a FRET-biosensor comprising the cGMP-binding sites of PKGIα. HNO induced FRET changes similar to those elicited by an increase of cGMP, suggesting that intradisulfide formation is associated with activation of PKGIα. Intradisulfide formation in PKGIα correlated with enhanced HNO-mediated vasorelaxation in mesenteric arteries in vitro and arteriolar dilation in vivo in mice. HNO induces intradisulfide formation in PKGIα, inducing the same effect as cGMP binding, namely kinase activation and thus vasorelaxation.