Konstantinos-Dionysios Alysandratos
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Konstantinos-Dionysios Alysandratos is active.
Publication
Featured researches published by Konstantinos-Dionysios Alysandratos.
Biochimica et Biophysica Acta | 2012
Theoharis C. Theoharides; Konstantinos-Dionysios Alysandratos; Asimenia Angelidou; Danae-Anastasia Delivanis; Nikolaos Sismanopoulos; Bodi Zhang; Shahrzad Asadi; Magdalini Vasiadi; Zuyi Weng; Alexandra Miniati; Dimitrios Kalogeromitros
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Theoharis C. Theoharides; Bodi Zhang; Duraisamy Kempuraj; Michael Tagen; Magdalini Vasiadi; Asimenia Angelidou; Konstantinos-Dionysios Alysandratos; D. Kalogeromitros; Shahrzad Asadi; Nikolaos Stavrianeas; Erika Peterson; Susan E. Leeman; Pio Conti
The peptide substance P (SP) has been implicated in inflammatory conditions, such as psoriasis, where mast cells and VEGF are increased. A relationship between SP and VEGF has not been well studied, nor has any interaction with the proinflammatory cytokines, especially IL-33. Here we report that SP (0.1–10 μM) induces gene expression and secretion of VEGF from human LAD2 mast cells and human umbilical core blood-derived cultured mast cells (hCBMCs). This effect is significantly increased by coadministration of IL-33 (5–100 ng/mL) in both cell types. The effect of SP on VEGF release is inhibited by treatment with the NK-1 receptor antagonist 733,060. SP rapidly increases cytosolic calcium, and so does IL-33 to a smaller extent; the addition of IL-33 augments the calcium increase. SP-induced VEGF production involves calcium-dependent PKC isoforms, as well as the ERK and JNK MAPKs. Gene expression of IL-33 and histidine decarboxylase (HDC), an indicator of mast cell presence/activation, is significantly increased in affected and unaffected (at least 15 cm away from the lesion) psoriatic skin, as compared with normal control skin. Immunohistochemistry indicates that IL-33 is associated with endothelial cells in both the unaffected and affected sites, but is stronger and also associated with immune cells in the affected site. These results imply that functional interactions among SP, IL-33, and mast cells leading to VEGF release contribute to inflammatory conditions, such as the psoriasis, a nonallergic hyperproliferative skin inflammatory disorder with a neurogenic component.
The Journal of Allergy and Clinical Immunology | 2011
Bodi Zhang; Konstantinos-Dionysios Alysandratos; Asimenia Angelidou; Shahrzad Asadi; Nikolaos Sismanopoulos; Danae-Anastasia Delivanis; Zuyi Weng; Alexandra Miniati; Magdalini Vasiadi; Alexandra Katsarou-Katsari; Benchun Miao; Susan E. Leeman; Dimitrios Kalogeromitros; Theoharis C. Theoharides
BACKGROUND Mast cells derive from hematopoietic cell precursors and participate in tissue allergic, immune, and inflammatory processes. They secrete many mediators, including preformed TNF, in response to allergic, neuropeptide, and environmental triggers. However, regulation of mast cell degranulation is not well understood. OBJECTIVE We investigated the role of mitochondrial dynamics in degranulation of human cultured mast cells. METHODS Human umbilical cord blood-derived mast cells (hCBMCs) and Laboratory of Allergic Diseases 2 (LAD2) mast cells were examined by confocal and differential interference contrast microscopy during activation by IgE/antigen and substance P (SP). Mast cells in control and atopic dermatitis (AD) skin were evaluated by transmission electron microscopy. LAD2 cells were pretreated with mitochondrial division inhibitor, a dynamin-related protein 1 (Drp1) inhibitor, and small interfering RNA for Drp1, which is necessary for mitochondrial fission and translocation. Calcineurin and Drp1 gene expression was analyzed in stimulated LAD2 cells and AD skin biopsies. RESULTS Stimulation of hCBMCs with IgE/antigen or LAD2 cells with SP leads to rapid (30 minutes) secretion of preformed TNF. Degranulation is accompanied by mitochondrial translocation from a perinuclear location to exocytosis sites. Extracellular calcium depletion prevents these effects, indicating calcium requirement. The calcium-dependent calcineurin and Drp1 are activated 30 minutes after SP stimulation. Reduction of Drp1 activity by mitochondrial division inhibitor and decrease of Drp1 expression using small interfering RNA inhibit mitochondrial translocation, degranulation, and TNF secretion. Mitochondrial translocation is also evident by transmission electron microscopy in skin mast cells from AD biopsies, in which gene expression of calcineurin, Drp1, and SP is higher than in normal skin. CONCLUSION Human mast cell degranulation requires mitochondrial dynamics, also implicated in AD.
BMC Pediatrics | 2012
Asimenia Angelidou; Shahrzad Asadi; Konstantinos-Dionysios Alysandratos; Anna Karagkouni; Stella Kourembanas; Theoharis C. Theoharides
BackgroundAutism Spectrum Disorders (ASD) are neurodevelopmental disorders characterized by varying deficits in social interactions, communication, and learning, as well as stereotypic behaviors. Despite the significant increase in ASD, there are few if any clues for its pathogenesis, hampering early detection or treatment. Premature babies are also more vulnerable to infections and inflammation leading to neurodevelopmental problems and higher risk of developing ASD. Many autism “susceptibility” genes have been identified, but “environmental” factors appear to play a significant role. Increasing evidence suggests that there are different ASD endophenotypes.DiscussionWe review relevant literature suggesting in utero inflammation can lead to preterm labor, while insufficient development of the gut-blood–brain barriers could permit exposure to potential neurotoxins. This risk apparently may increase in parents with “allergic” or autoimmune problems during gestation, or if they had been exposed to stressors. The presence of circulating auto-antibodies against fetal brain proteins in mothers is associated with higher risk of autism and suggests disruption of the blood–brain-barrier (BBB). A number of papers have reported increased brain expression or cerebrospinal fluid (CSF) levels of pro-inflammatory cytokines, especially TNF, which is preformed in mast cells. Recent evidence also indicates increased serum levels of the pro-inflammatory mast cell trigger neurotensin (NT), and of extracellular mitochondrial DNA (mtDNA), which is immunogenic. Gene mutations of phosphatase and tensin homolog (PTEN), the negative regulator of the mammalian target of rapamycin (mTOR), have been linked to higher risk of autism, but also to increased proliferation and function of mast cells.SummaryPremature birth and susceptibility genes may make infants more vulnerable to allergic, environmental, infectious, or stress-related triggers that could stimulate mast cell release of pro-inflammatory and neurotoxic molecules, thus contributing to brain inflammation and ASD pathogenesis, at least in an endophenotype of ASD patients.
Current Pharmaceutical Design | 2012
Nikolaos Sismanopoulos; Danae-Anastasia Delivanis; Konstantinos-Dionysios Alysandratos; Asimenia Angelidou; Anastasia Therianou; Dimitrios Kalogeromitros; Theoharis C. Theoharides
Mast cells are important in the development of allergic and anaphylactic reactions, but also in acquired and innate immunity. There is also increasing evidence that mast cells participate in inflammatory diseases, where they can be activated by non-allergic triggers, such as neuropeptides and cytokines, often having synergistic effects as in the case of substance P (SP) and IL-33. Secretion of vasoactive mediators, cytokines and proteinases contribute to the development of coronary artery disease (CAD), as well as to diet-induced obesity and the metabolic syndrome. Mast cells may be able to orchestrate such different biological processes through their ability to release pro-inflammatory mediators selectively without the degranulation typical of allergic reactions. Recent evidence suggests that mitochondrial uncoupling protein 2 (UCP2) and mitochondrial translocation regulate mast cell degranulation, but not selective mediator release. Better understanding of these two processes and how mast cells exert both immunostimulatory and immunosuppressive actions could lead to the development of inhibitors of release of specific mediators with novel therapeutic applications.
Journal of Autism and Developmental Disorders | 2011
Asimenia Angelidou; Konstantinos-Dionysios Alysandratos; Shahrzad Asadi; Bodi Zhang; Konstantinos Francis; Magdalini Vasiadi; Dimitrios Kalogeromitros; Theoharis C. Theoharides
Many children with Autism Spectrum Disorders (ASD) have either family and/or personal history of “allergic symptomatology”, often in the absence of positive skin or RAST tests. These symptoms may suggest mast cell activation by non-allergic triggers. Moreover, children with mastocytosis or mast cell activation syndrome (MCAS), a spectrum of rare diseases characterized by increased number of activated mast cells in many organs, appear to have ASD at a rate tenfold higher (1/10 children) than that of the general population (1/100 children). Mast cell activation by allergic, infectious, environmental and stress-related triggers, especially perinatally, would release pro-inflammatory and neurotoxic molecules. We speculate these could disrupt the gut–blood–brain barriers, thus contributing to brain inflammation and ASD pathogenesis. Increased mast cell responsiveness may define at least a subgroup of ASD subjects, who could benefit from inhibition of mast cell activation.
Journal of Investigative Dermatology | 2012
Shahrzad Asadi; Konstantinos-Dionysios Alysandratos; Asimenia Angelidou; Alexandra Miniati; Nikolaos Sismanopoulos; Magdalini Vasiadi; Bodi Zhang; Dimitrios Kalogeromitros; Theoharis C. Theoharides
Corticotropin-releasing hormone (CRH) is secreted under stress and regulates the hypothalamic-pituitary-adrenal (HPA) axis. However, CRH is also secreted outside the brain where it exerts pro-inflammatory effects through activation of mast cells, which are increasingly implicated in immunity and inflammation. Substance P (SP) is also involved in inflammatory diseases. Human LAD2 leukemic mast cells express only CRHR-1 mRNA weakly. Treatment of LAD2 cells with SP (0.5–2 µM) for 6 hr significantly increases CRHR-1 mRNA and protein expression. Addition of CRH (1 µM) to LAD2 cells “primed” with SP for 48 hr and then washed, induces synthesis and release of IL-8, tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF) 24 hr later. These effects are blocked by pretreatment with an NK-1 receptor antagonist. Treatment of LAD2 cells with CRH (1 µM) for 6 hr induces gene expression of NK-1 as compared to controls. However, repeated stimulation of mast cells with CRH (1 µM) leads to downregulation of CRHR-1 and upregulation in NK-1 gene expression. These results indicate that SP can stimulate mast cells and also increase expression of functional CRHR-1, while CRH induces NK-1 gene expression. These results may explain CRHR-1 and NK-1 expression in lesional skin of psoriatic patients.
Annals of Allergy Asthma & Immunology | 2012
Theoharis C. Theoharides; Souad Enakuaa; Nikolaos Sismanopoulos; Shahrzad Asadi; Evangelos C. Papadimas; Asimenia Angelidou; Konstantinos-Dionysios Alysandratos
OBJECTIVE To review the available evidence linking stress to asthma and to investigate whether mast cells contribute to the effect of stress through activation by corticotropin-releasing hormone (CRH). DATA SOURCE The PubMed database was searched for articles (1998-2011) using the keywords anxiety, asthma, exacerbation, inflammation, mast cells, socioeconomic status, stress, violence, and worsening. STUDY SELECTION Articles were selected based on their relevance to the topic, with emphasis on clinical or epidemiologic data linking stress to asthma and studies that offered possible explanations for how stress may affect asthma. RESULTS Many articles point to an association between stress (socioeconomic status, interpersonal conflicts, emotional distress, terrorism) and asthma exacerbations but without any distinct pathogenetic mechanism. A few articles have reported reduced circulating cortisol and/or sensitivity to corticosteroids. We propose that mast cells, known to be involved in the pathophysiology of asthma, can be activated by CRH, which is secreted under stress in the lungs, leading to selective release of proinflammatory mediators. This effect may be augmented by neuropeptides or cytokines. CRH also reduces T-regulatory cell production of interleukin 10, which in known to inhibit allergic mast cell activation. CONCLUSION More studies are required to investigate lung levels of CRH and selective mast cell mediators. Reducing stress and using CRH receptor antagonists and/or mast cell blockers may serve as possible new therapeutic approaches for asthma.
International Archives of Allergy and Immunology | 2012
Bodi Zhang; Zuyi Weng; Nikolaos Sismanopoulos; Sharhzad Asadi; Anastasia Therianou; Konstantinos-Dionysios Alysandratos; Asimenia Angelidou; Orian S. Shirihai; Theoharis C. Theoharides
Background: Mast cells are immune cells derived from hematopoietic precursors that mature in the tissue microenvironment. Mast cells are critical for allergic, immune and inflammatory processes, many of which involve tumor necrosis factor (TNF). These cells uniquely store TNF in their secretory granules. Upon stimulation, mast cells rapidly (30 min) secrete β-hexosaminidase and granule-stored TNF through degranulation, but also increase TNF mRNA and release de novo synthesized TNF 24 h later. The regulation of these two distinct pathways is poorly understood. Methods: Human LAD2 leukemic mast cells are stimulated by substance P. TNF secretion and gene expression were measured by ELISA and real-time PCR, and mitochondrial dynamics was observed in live cells under confocal microscopy. Cell energy consumption was measured in terms of oxygen consumption rate. Results: Here, we show that granule-stored TNF is preformed, and its secretion from LAD2 mast cells stimulated by substance P (1) exhibits higher energy consumption and is inhibited by the mitochondrial ATP pump blocker oligomycin, (2) shows rapid increase in intracellular calcium levels, and (3) exhibits reversible mitochondrial translocation, from a perinuclear distribution to the cell surface, as compared to de novo synthesized TNF release induced by lipopolysaccharide. This mitochondrial translocation is confirmed using primary human umbilical cord blood-derived mast cells stimulated by an allergic trigger (IgE/streptavidin). Conclusion: Our findings indicate that unique mitochondrial functions distinguish granule-stored from newly synthesized TNF release from human mast cells, thus permitting the versatile involvement of mast cells in different biological processes.
International Journal of Immunopathology and Pharmacology | 2010
Shahrzad Asadi; Bodi Zhang; Weng Z; Asimenia Angelidou; Duraisamy Kempuraj; Konstantinos-Dionysios Alysandratos; Tc Theoharides
HgCl2 is a known environmental neurotoxin, but is also used as preservative in vaccines as thimerosal containing ethyl mercury covalently linked to thiosalicylate. We recently reported that mercury chloride (HgCl2) can stimulate human mast cells to release vascular endothelial growth factor (VEGF), which is also vasoactive and pro-inflammatory. Here we show that thimerosal induces significant VEGF release from human leukemic cultured LAD2 mast cells (at 1 μM 326±12 pg/106 cells and 335.5±12 pg/106 cells at 10 μM) compared to control cells (242±21 pg/106 cells, n=5, p<0.05); this effect is weaker than that induced by HgCl2 at 10 μM (448±14 pg/106 cells) (n=3, p<0.05). In view of this finding, we hypothesize that the thiosalicylate component of thimerosal may have an inhibitory effect on VEGF release. Thimerosal (10 μM) added together with the peptide Substance P (SP) at 2 μM, used as a positive control, reduced VEGF release by 90%. Methyl thiosalicylate (1 or 10 μM) added with either SP or HgCl2 (10 μM) inhibited VEGF release by 100%, while sodium salicylate or ibuprofen had no effect. Pretreatment for 10 min with the flavonoid luteolin (0.1 mM) before HgCI2 or thimerosal completely blocked their effect. Luteolin and methyl thiosalicylate may be useful in preventing mercury-induced toxicity.