Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konstantinos Lefkimmiatis is active.

Publication


Featured researches published by Konstantinos Lefkimmiatis.


Journal of Cell Biology | 2013

The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics

Konstantinos Lefkimmiatis; Daniela Leronni; Aldebaran M. Hofer

FRET-based sensors for cAMP and PKA activity reveal that mitochondrial subcompartments host segregated cAMP cascades with distinct functional and kinetic signatures.


Blood | 2010

The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome

James J. Driscoll; Dheeraj Pelluru; Konstantinos Lefkimmiatis; Mariateresa Fulciniti; Rao Prabhala; Philip R. Greipp; Bart Barlogie; Yu-Tzu Tai; Kenneth C. Anderson; John D. Shaughnessy; Christina M. Annunziata; Nikhil C. Munshi

Multiple myeloma (MM) is a plasma cell neoplasm that proceeds through a premalignant state of monoclonal gammopathy of unknown significance; however, the molecular events responsible for myelomagenesis remain uncharacterized. To identify cellular pathways deregulated in MM, we addressed that sumoylation is homologous to ubiquitination and results in the attachment of the ubiquitin-like protein Sumo onto target proteins. Sumoylation was markedly enhanced in MM patient lysates compared with normal plasma cells and expression profiling indicated a relative induction of sumoylation pathway genes. The Sumo-conjugating enzyme Ube2I, the Sumo-ligase PIAS1, and the Sumo-inducer ARF were elevated in MM patient samples and cell lines. Survival correlated with expression because 80% of patients with low UBE2I and PIAS1 were living 6 years after transplantation, whereas only 45% of patients with high expression survived 6 years. UBE2I encodes the sole Sumo-conjugating enzyme in mammalian cells and cells transfected with a dominant-negative sumoylation-deficient UBE2I mutant exhibited decreased survival after radiation exposure, impaired adhesion to bone marrow stroma cell and decreased bone marrow stroma cell-induced proliferation. UBE2I confers cells with multiple advantages to promote tumorigenesis and predicts decreased survival when combined with PIAS1. The sumoylation pathway is a novel therapeutic target with implications for existing proteasomal-based treatment strategies.


BMC Evolutionary Biology | 2007

Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus.

David S. Horner; Konstantinos Lefkimmiatis; Aurelio Reyes; Carmela Gissi; Cecilia Saccone

BackgroundPhylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious.ResultsWe have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago.ConclusionTaken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies.


Cell Cycle | 2006

The Fatty Acid Synthase Gene is a Conserved p53 Family Target from Worm to Human

Anna Maria D'Erchia; Apollonia Tullo; Konstantinos Lefkimmiatis; Cecilia Saccone; Elisabetta Sbisà

The discovery that the p53 family consists of three members (p53, p63 and p73) in vertebrates and of a single homolog in invertebrates has raised the challenge of understanding the functions of the ancestor and how they have evolved and differentiated within the duplicated genes in vertebrates. Here, we report that the fatty acid synthase (FAS) gene, encoding for a key enzyme involved in the biogenesis of membrane lipids in rapidly proliferating cells, is a conserved target of the p53 family throughout the evolution. We show that CEP-1, the C. elegans p53 homolog, is able to bind the two p53 family responsive elements (REs) identified in the worm fasn-1 gene. Moreover, we demonstrate that fasn-1 expression is modulated by CEP-1 in vivo, by comparing wild-type and CEP-1 knockout worms. In human, luciferase and chromatin immunoprecipitation assays demonstrate that TAp73α and ΔNp63α, but not p53, TAp73β and TAp63α bind the two p53 REs of the human FASN gene. We show that the ectopic expression of TAp73β and ΔNp63α leads to an increase of FASN mRNA levels, while their silencing produces a decrease of FASN expression. Furthermore, we present data showing a correlation between ΔNp63α and FASN expression in cellular proliferation. Of relevant importance is that fasn-1 is the first CEP-1 direct target gene identified so far in C. elegans and our results suggest a new CEP-1 role in cellular proliferation and development, besides the one already described in apoptosis of germ cells. These data confirm the hypothesis that the ancestral functions of the single invertebrate gene may have been spread out among the three vertebrate members, each of them have acquired specific role in cell cycle regulation.


Cancer Research | 2009

p73 and p63 Sustain Cellular Growth by Transcriptional Activation of Cell Cycle Progression Genes

Konstantinos Lefkimmiatis; Mariano Francesco Caratozzolo; Paola Merlo; Anna Maria D'Erchia; Beatriz Navarro; Massimo Levrero; Elisabetta Sbisà; Apollonia Tullo

Despite extensive studies on the role of tumor suppressor p53 protein and its homologues, p73 and p63, following their overexpression or cellular stress, very little is known about the regulation of the three proteins in cells during physiologic cell cycle progression. We report a role for p73 and p63 in supporting cellular proliferation through the transcriptional activation of the genes involved in G(1)-S and G(2)-M progression. We found that in MCF-7 cells, p73 and p63, but not p53, are modulated during the cell cycle with a peak in S phase, and their silencing determines a significant suppression of proliferation compared with the control. Chromatin immunoprecipitation analysis shows that in cycling cells, p73 and p63 are bound to the p53-responsive elements (RE) present in the regulatory region of cell cycle progression genes. On the contrary, when the cells are arrested in G(0)-G(1), p73 detaches from the REs and it is replaced by p53, which represses the expression of these genes. When the cells move in S phase, p73 is recruited again and p53 is displaced or is weakly bound to the REs. These data open new possibilities for understanding the involvement of p73 and p63 in cancer. The elevated concentrations of p73 and p63 found in many cancers could cause the aberrant activation of cell growth progression genes and therefore contribute to cancer initiation or progression under certain conditions.


Cardiovascular Research | 2016

Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.

Mark A. Richards; Oliver Lomas; Kees Jalink; Kerrie L. Ford; Richard D. Vaughan-Jones; Konstantinos Lefkimmiatis; Pawel Swietach

Aims 3′,5′-Cyclic adenosine monophosphate (cAMP) signals in the heart are often confined to concentration microdomains shaped by cAMP diffusion and enzymatic degradation. While the importance of phosphodiesterases (degradative enzymes) in sculpting cAMP microdomains is well established in cardiomyocytes, less is known about cAMP diffusivity (DcAMP) and factors affecting it. Many earlier studies have reported fast diffusivity, which argues against sharply defined microdomains. Methods and results [cAMP] dynamics in the cytoplasm of adult rat ventricular myocytes were imaged using a fourth generation genetically encoded FRET-based sensor. The [cAMP]-response to the addition and removal of isoproterenol (β-adrenoceptor agonist) quantified the rates of cAMP synthesis and degradation. To obtain a read out of DcAMP, a stable [cAMP] gradient was generated using a microfluidic device which delivered agonist to one half of the myocyte only. After accounting for phosphodiesterase activity, DcAMP was calculated to be 32 µm2/s; an order of magnitude lower than in water. Diffusivity was independent of the amount of cAMP produced. Saturating cAMP-binding sites with the analogue 6-Bnz-cAMP did not accelerate DcAMP, arguing against a role of buffering in restricting cAMP mobility. cAMP diffused at a comparable rate to chemically unrelated but similar sized molecules, arguing for a common physical cause of restricted diffusivity. Lower mitochondrial density and order in neonatal cardiac myocytes allowed for faster diffusion, demonstrating the importance of mitochondria as physical barriers to cAMP mobility. Conclusion In adult cardiac myocytes, tortuosity due to physical barriers, notably mitochondria, restricts cAMP diffusion to levels that are more compatible with microdomain signalling.


The Journal of General Physiology | 2017

Exploring cells with targeted biosensors

Diana Pendin; Elisa Greotti; Konstantinos Lefkimmiatis; Tullio Pozzan

Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.


Journal of Cellular and Molecular Medicine | 2012

Termination and activation of store‐operated cyclic AMP production

Isabella Maiellaro; Konstantinos Lefkimmiatis; Mary Pat Moyer; Silvana Curci; Aldebaran M. Hofer

Diverse pathophysiological processes (e.g. obesity, lifespan determination, addiction and male fertility) have been linked to the expression of specific isoforms of the adenylyl cyclases (AC1‐AC10), the enzymes that generate cyclic AMP (cAMP). Our laboratory recently discovered a new mode of cAMP production, prominent in certain cell types, that is stimulated by any manoeuvre causing reduction of free [Ca2+] within the lumen of the endoplasmic reticulum (ER) calcium store. Activation of this ‘store‐operated’ pathway requires the ER Ca2+ sensor, STIM1, but the identity of the enzymes responsible for cAMP production and how this process is regulated is unknown. Here, we used sensitive FRET‐based sensors for cAMP in single cells combined with silencing and overexpression approaches to show that store‐operated cAMP production occurred preferentially via the isoform AC3 in NCM460 colonic epithelial cells. Ca2+ entry via the plasma membrane Ca2+ channel, Orai1, suppressed cAMP production, independent of store refilling. These findings are an important first step towards defining the functional significance and to identify the protein composition of this novel Ca2+/cAMP crosstalk system.


The Journal of Neuroscience | 2016

Dysregulation of Neuronal Ca2+ Channel Linked to Heightened Sympathetic Phenotype in Prohypertensive States

Hege E. Larsen; Emma N. Bardsley; Konstantinos Lefkimmiatis; David J. Paterson

Hypertension is associated with impaired nitric oxide (NO)–cyclic nucleotide (CN)-coupled intracellular calcium (Ca2+) homeostasis that enhances cardiac sympathetic neurotransmission. Because neuronal membrane Ca2+ currents are reduced by NO-activated S-nitrosylation, we tested whether CNs affect membrane channel conductance directly in neurons isolated from the stellate ganglia of spontaneously hypertensive rats (SHRs) and their normotensive controls. Using voltage-clamp and cAMP–protein kinase A (PKA) FRET sensors, we hypothesized that impaired CN regulation provides a direct link to abnormal signaling of neuronal calcium channels in the SHR and that targeting cGMP can restore the channel phenotype. We found significantly larger whole-cell Ca2+ currents from diseased neurons that were largely mediated by the N-type Ca2+ channel (Cav2.2). Elevating cGMP restored the SHR Ca2+ current to levels seen in normal neurons that were not affected by cGMP. cGMP also decreased cAMP levels and PKA activity in diseased neurons. In contrast, cAMP–PKA activity was increased in normal neurons, suggesting differential switching in phosphodiesterase (PDE) activity. PDE2A inhibition enhanced the Ca2+ current in normal neurons to a conductance similar to that seen in SHR neurons, whereas the inhibitor slightly decreased the current in diseased neurons. Pharmacological evidence supported a switching from cGMP acting via PDE3 in control neurons to PDE2A in SHR neurons in the modulation of the Ca2+ current. Our data suggest that a disturbance in the regulation of PDE-coupled CNs linked to N-type Ca2+ channels is an early hallmark of the prohypertensive phenotype associated with intracellular Ca2+ impairment underpinning sympathetic dysautonomia. SIGNIFICANCE STATEMENT Here, we identify dysregulation of cyclic-nucleotide (CN)-linked neuronal Ca2+ channel activity that could provide the trigger for the enhanced sympathetic neurotransmission observed in the prohypertensive state. Furthermore, we provide evidence that increasing cGMP rescues the channel phenotype and restores ion channel activity to levels seen in normal neurons. We also observed CN cross-talk in sympathetic neurons that may be related to a differential switching in phosphodiesterase activity. The presence of these early molecular changes in asymptomatic, prohypertensive animals could facilitate the identification of novel therapeutic targets with which to modulate intracellular Ca2+. Turning down the gain of sympathetic hyperresponsiveness in cardiovascular disease associated with sympathetic dysautonomia would have significant therapeutic utility.


Biochemical Society Transactions | 2014

cAMP signalling meets mitochondrial compartments

Konstantinos Lefkimmiatis

Mitochondria are highly dynamic organelles comprising at least three distinct areas, the OMM (outer mitochondrial membrane), the IMS (intermembrane space) and the mitochondrial matrix. Physical compartmentalization allows these organelles to host different functional domains and therefore participate in a variety of important cellular actions such as ATP synthesis and programmed cell death. In a surprising homology, it is now widely accepted that the ubiquitous second messenger cAMP uses the same stratagem, compartmentalization, in order to achieve the characteristic functional pleiotropy of its pathway. Accumulating evidence suggests that all the main mitochondrial compartments contain segregated cAMP cascades; however, the regulatory properties and functional significance of such domains are not fully understood and often remain controversial issues. The present mini-review discusses our current knowledge of how the marriage between mitochondrial and cAMP compartmentalization is achieved and its effects on the biology of the cell.

Collaboration


Dive into the Konstantinos Lefkimmiatis's collaboration.

Top Co-Authors

Avatar

Aldebaran M. Hofer

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge