Konstantinos Meletis
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Konstantinos Meletis.
PLOS Biology | 2008
Konstantinos Meletis; Fanie Barnabé-Heider; Marie Carlén; Emma Evergren; Nikolay Tomilin; Oleg Shupliakov; Jonas Frisén
Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.
Development | 2005
Konstantinos Meletis; Valtteri Wirta; Sanna-Maria Hede; Monica Nistér; Joakim Lundeberg; Jonas Frisén
There is increasing evidence that tumors are heterogeneous and that a subset of cells act as cancer stem cells. Several proto-oncogenes and tumor suppressors control key aspects of stem cell function, suggesting that similar mechanisms control normal and cancer stem cell properties. We show here that the prototypical tumor suppressor p53, which plays an important role in brain tumor initiation and growth, is expressed in the neural stem cell lineage in the adult brain. p53 negatively regulates proliferation and survival, and thereby self-renewal, of neural stem cells. Analysis of the neural stem cell transcriptome identified the dysregulation of several cell cycle regulators in the absence of p53, most notably a pronounced downregulation of p21 expression. These data implicate p53 as a suppressor of tissue and cancer stem cell self-renewal.
Cell Stem Cell | 2010
Fanie Barnabé-Heider; Christian Göritz; Hanna Sabelström; Hirohide Takebayashi; Frank W. Pfrieger; Konstantinos Meletis; Jonas Frisén
Several distinct cell types in the adult central nervous system have been suggested to act as stem or progenitor cells generating new cells under physiological or pathological conditions. We have assessed the origin of new cells in the adult mouse spinal cord by genetic fate mapping. Oligodendrocyte progenitors self-renew, give rise to new mature oligodendrocytes, and constitute the dominating proliferating cell population in the intact adult spinal cord. In contrast, astrocytes and ependymal cells, which are restricted to limited self-duplication in the intact spinal cord, generate the largest number of cells after spinal cord injury. Only ependymal cells generate progeny of multiple fates, and neural stem cell activity in the intact and injured adult spinal cord is confined to this cell population. We provide an integrated view of how several distinct cell types contribute in complementary ways to cell maintenance and the reaction to injury.
Brain | 2010
Sascha Seidel; Boyan K. Garvalov; Valtteri Wirta; Louise von Stechow; Anne Schänzer; Konstantinos Meletis; Marietta Wolter; Daniel Sommerlad; Anne-Theres Henze; Monica Nistér; Guido Reifenberger; Joakim Lundeberg; Jonas Frisén; Till Acker
Glioma growth and progression depend on a specialized subpopulation of tumour cells, termed tumour stem cells. Thus, tumour stem cells represent a critical therapeutic target, but the molecular mechanisms that regulate them are poorly understood. Hypoxia plays a key role in tumour progression and in this study we provide evidence that the hypoxic tumour microenvironment also controls tumour stem cells. We define a detailed molecular signature of tumour stem cell genes, which are overexpressed by tumour cells in vascular and perinecrotic/hypoxic niches. Mechanistically, we show that hypoxia plays a key role in the regulation of the tumour stem cell phenotype through hypoxia-inducible factor 2alpha and subsequent induction of specific tumour stem cell signature genes, including mastermind-like protein 3 (Notch pathway), nuclear factor of activated T cells 2 (calcineurin pathway) and aspartate beta-hydroxylase domain-containing protein 2. Notably, a number of these genes belong to pathways regulating the stem cell phenotype. Consistently, tumour stem cell signature genes are overexpressed in newly formed gliomas and are associated with worse clinical prognosis. We propose that tumour stem cells are maintained within a hypoxic niche, providing a functional link between the well-established role of hypoxia in stem cell and tumour biology. The identification of molecular regulators of tumour stem cells in the hypoxic niche points to specific signalling mechanisms that may be used to target the glioblastoma stem cell population.
Nature | 2012
Juan Song; Chun Zhong; Michael A. Bonaguidi; Gerald J. Sun; Derek Y Hsu Y Hsu; Yan Gu; Konstantinos Meletis; Z. Josh Huang; Shaoyu Ge; Grigori Enikolopov; Karl Deisseroth; Bernhard Lüscher; Kimberly M. Christian; Guo Li Ming; Hongjun Song
Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter γ-aminobutyric acid (GABA) by means of γ2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of γ2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell–signal–receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.
The Journal of Neuroscience | 2010
Froylan Calderon de Anda; Konstantinos Meletis; Xuecai Ge; Damien Rei; Li-Huei Tsai
The mechanisms underlying the normal development of neuronal morphology remain a fundamental question in neurobiology. Studies in cultured neurons have suggested that the position of the centrosome and the Golgi may predict the site of axon outgrowth. During neuronal migration in the developing cortex, however, the centrosome and Golgi are oriented toward the cortical plate at a time when axons grow toward the ventricular zone. In the current work, we use in situ live imaging to demonstrate that the centrosome and the accompanying polarized cytoplasm exhibit apical translocation in newborn cortical neurons preceding initial axon outgrowth. Disruption of centrosomal activity or downregulation of the centriolar satellite protein PCM-1 affects axon formation. We further show that downregulation of the centrosomal protein Cep120 impairs microtubule organization, resulting in increased centrosome motility. Decreased centrosome motility resulting from microtubule stabilization causes an aberrant centrosomal localization, leading to misplaced axonal outgrowth. Our results reveal the dynamic nature of the centrosome in developing cortical neurons, and implicate centrosome translocation and microtubule organization during the multipolar stage as important determinants of axon formation.
Nature Neuroscience | 2012
Froylan Calderon de Anda; Ana Lucia Rosario; Omer Durak; Tracy S. Tran; Johannes Gräff; Konstantinos Meletis; Damien Rei; Takahiro Soda; Ram Madabhushi; David D. Ginty; Alex L. Kolodkin; Li-Huei Tsai
How neurons develop their morphology is an important question in neurobiology. Here we describe a new pathway that specifically affects the formation of basal dendrites and axonal projections in cortical pyramidal neurons. We report that thousand-and-one-amino acid 2 kinase (TAOK2), also known as TAO2, is essential for dendrite morphogenesis. TAOK2 downregulation impairs basal dendrite formation in vivo without affecting apical dendrites. Moreover, TAOK2 interacts with Neuropilin 1 (Nrp1), a receptor protein that binds the secreted guidance cue Semaphorin 3A (Sema3A). TAOK2 overexpression restores dendrite formation in cultured cortical neurons from Nrp1Sema− mice, which express Nrp1 receptors incapable of binding Sema3A. TAOK2 overexpression also ameliorates the basal dendrite impairment resulting from Nrp1 downregulation in vivo. Finally, Sema3A and TAOK2 modulate the formation of basal dendrites through the activation of the c-Jun N-terminal kinase (JNK). These results delineate a pathway whereby Sema3A and Nrp1 transduce signals through TAOK2 and JNK to regulate basal dendrite development in cortical neurons.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Magda Forsberg; Marie Carlén; Konstantinos Meletis; Maggie S.Y. Yeung; Fanie Barnabé-Heider; Mats A. A. Persson; Johan Aarum; Jonas Frisén
Neural stem cells have a broad differentiation repertoire during embryonic development and can be reprogrammed to pluripotency comparatively easily. We report that adult neural stem cells can be reprogrammed at very high efficiency to monocytes, a differentiated fate of an unrelated somatic lineage, by ectopic expression of the Ets transcription factor PU.1. The reprogrammed cells display a marker profile and functional characteristics of monocytes and integrate into tissues after transplantation. The failure to reprogram lineage-committed neural cells to monocytes with PU.1 suggests that neural stem cells are uniquely amenable to reprogramming.
Trends in Neurosciences | 2003
Konstantinos Meletis; Jonas Frisén
Recent studies suggest that non-neural cells can generate neurons in mice and humans. There is no lack of excitement about these results: they challenge our view of cellular differentiation and the prospect of being able to generate neurons from, for example, blood is very attractive. But is it too good to be true?
BMC Neuroscience | 2005
Maria Sievertzon; Valtteri Wirta; Alex Mercer; Konstantinos Meletis; Lilian Wikström; Jonas Frisén; Joakim Lundeberg
BackgroundNeural stem cells (NSCs) can be isolated from the adult mammalian brain and expanded in culture, in the form of cellular aggregates called neurospheres. Neurospheres provide an in vitro model for studying NSC behaviour and give information on the factors and mechanisms that govern their proliferation and differentiation. They are also a promising source for cell replacement therapies of the central nervous system. Neurospheres are complex structures consisting of several cell types of varying degrees of differentiation. One way of characterising neurospheres is to analyse their gene expression profiles. The value of such studies is however uncertain since they are heterogeneous structures and different populations of neurospheres may vary significantly in their gene expression.ResultsTo address this issue, we have used cDNA microarrays and a recently reported tag cDNA amplification method to analyse the gene expression profiles of neurospheres originating from separate isolations of the lateral ventricle wall of adult mice and passaged to varying degrees. Separate isolations as well as consecutive passages yield a high variability in gene expression while parallel cultures yield the lowest variability.ConclusionsWe demonstrate a low technical amplification variability using the employed amplification strategy and conclude that neurospheres from the same isolation and passage are sufficiently similar to be used for comparative gene expression analysis.