Konstantinos Nikopoulos
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Konstantinos Nikopoulos.
American Journal of Human Genetics | 2010
Konstantinos Nikopoulos; Christian Gilissen; Alexander Hoischen; C. Erik van Nouhuys; F. Nienke Boonstra; Ellen A.W. Blokland; Peer Arts; Nienke Wieskamp; Tim M. Strom; C. Ayuso; Mauk A.D. Tilanus; Sanne Bouwhuis; Arijit Mukhopadhyay; Hans Scheffer; Lies H. Hoefsloot; Joris A. Veltman; Frans P.M. Cremers; Rob W.J. Collin
Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous retinal disorder characterized by abnormal vascularisation of the peripheral retina, often accompanied by retinal detachment. To date, mutations in three genes (FZD4, LRP5, and NDP) have been shown to be causative for FEVR. In two large Dutch pedigrees segregating autosomal-dominant FEVR, genome-wide SNP analysis identified an FEVR locus of approximately 40 Mb on chromosome 7. Microsatellite marker analysis suggested similar at risk haplotypes in patients of both families. To identify the causative gene, we applied next-generation sequencing in the proband of one of the families, by analyzing all exons and intron-exon boundaries of 338 genes, in addition to microRNAs, noncoding RNAs, and other highly conserved genomic regions in the 40 Mb linkage interval. After detailed bioinformatic analysis of the sequence data, prioritization of all detected sequence variants led to three candidates to be considered as the causative genetic defect in this family. One of these variants was an alanine-to-proline substitution in the transmembrane 4 superfamily member 12 protein, encoded by TSPAN12. This protein has very recently been implicated in regulating the development of retinal vasculature, together with the proteins encoded by FZD4, LRP5, and NDP. Sequence analysis of TSPAN12 revealed two mutations segregating in five of 11 FEVR families, indicating that mutations in TSPAN12 are a relatively frequent cause of FEVR. Furthermore, we demonstrate the power of targeted next-generation sequencing technology to identify disease genes in linkage intervals.
Human Mutation | 2010
Konstantinos Nikopoulos; Hanka Venselaar; Rob W.J. Collin; Rosa Riveiro-Alvarez; F. Nienke Boonstra; Johanna M. M. Hooymans; Arijit Mukhopadhyay; Deborah J. Shears; Marleen van Bers; Ilse J. de Wijs; Anthonie J. van Essen; Rolf H. Sijmons; Mauk A.D. Tilanus; C. Erik van Nouhuys; C. Ayuso; Lies H. Hoefsloot; Frans P.M. Cremers
Wnt signaling is a crucial component of the cell machinery orchestrating a series of physiological processes such as cell survival, proliferation, and migration. Among the plethora of roles that Wnt signaling plays, its canonical branch regulates eye organogenesis and angiogenesis. Mutations in the genes encoding the low density lipoprotein receptor protein 5 (LRP5) and frizzled 4 (FZD4), acting as coreceptors for Wnt ligands, cause familial exudative vitreoretinopathy (FEVR). Moreover, mutations in the gene encoding NDP, a ligand for these Wnt receptors, cause Norrie disease and FEVR. Both FEVR and Norrie disease share similar phenotypic characteristics, including abnormal vascularization of the peripheral retina and formation of fibrovascular masses in the eye that can lead to blindness. In this mutation update, we report 21 novel variants for FZD4, LRP5, and NDP, and discuss the putative functional consequences of missense mutations. In addition, we provide a comprehensive overview of all previously published variants in the aforementioned genes and summarize the phenotypic characteristics in mouse models carrying mutations in the orthologous genes. The increasing molecular understanding of Wnt signaling, related to ocular development and blood supply, offers more tools for accurate disease diagnosis that may be important in the development of therapeutic interventions. Hum Mutat 31:656–666, 2010.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Rob W.J. Collin; Konstantinos Nikopoulos; Margo Dona; Christian Gilissen; Alexander Hoischen; F. Nienke Boonstra; James A. Poulter; Hiroyuki Kondo; Wolfgang Berger; Carmel Toomes; Tomoko Tahira; Lucas R. Mohn; Ellen A.W. Blokland; Lisette Hetterschijt; Manir Ali; Johanne M. Groothuismink; Lonneke Duijkers; Chris F. Inglehearn; Lea Sollfrank; Tim M. Strom; Eiichi Uchio; C. Erik van Nouhuys; Hannie Kremer; Joris A. Veltman; Erwin van Wijk; Frans P.M. Cremers
Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous disorder characterized by abnormal vascularization of the peripheral retina, which can result in retinal detachment and severe visual impairment. In a large Dutch FEVR family, we performed linkage analysis, exome sequencing, and segregation analysis of DNA variants. We identified putative disease-causing DNA variants in proline-alanine-rich ste20-related kinase (c.791dup; p.Ser265ValfsX64) and zinc finger protein 408 (ZNF408) (c.1363C>T; p.His455Tyr), the latter of which was also present in an additional Dutch FEVR family that subsequently appeared to share a common ancestor with the original family. Sequence analysis of ZNF408 in 132 additional individuals with FEVR revealed another potentially pathogenic missense variant, p.Ser126Asn, in a Japanese family. Immunolocalization studies in COS-1 cells transfected with constructs encoding the WT and mutant ZNF408 proteins, revealed that the WT and the p.Ser126Asn mutant protein show complete nuclear localization, whereas the p.His455Tyr mutant protein was localized almost exclusively in the cytoplasm. Moreover, in a cotransfection assay, the p.His455Tyr mutant protein retains the WT ZNF408 protein in the cytoplasm, suggesting that this mutation acts in a dominant-negative fashion. Finally, morpholino-induced knockdown of znf408 in zebrafish revealed defects in developing retinal and trunk vasculature, that could be rescued by coinjection of RNA encoding human WT ZNF408 but not p.His455Tyr mutant ZNF408. Together, our data strongly suggest that mutant ZNF408 results in abnormal retinal vasculogenesis in humans and is associated with FEVR.
PLOS ONE | 2013
Marta Corton; Koji M. Nishiguchi; Almudena Avila-Fernandez; Konstantinos Nikopoulos; Rosa Riveiro-Alvarez; Sorina D. Tatu; Carmen Ayuso; Carlo Rivolta
Background Retinal dystrophies (RD) are a group of hereditary diseases that lead to debilitating visual impairment and are usually transmitted as a Mendelian trait. Pathogenic mutations can occur in any of the 100 or more disease genes identified so far, making molecular diagnosis a rather laborious process. In this work we explored the use of whole exome sequencing (WES) as a tool for identification of RD mutations, with the aim of assessing its applicability in a diagnostic context. Methodology/Principal Findings We ascertained 12 Spanish families with seemingly recessive RD. All of the index patients underwent mutational pre-screening by chip-based sequence hybridization and resulted to be negative for known RD mutations. With the exception of one pedigree, to simulate a standard diagnostic scenario we processed by WES only the DNA from the index patient of each family, followed by in silico data analysis. We successfully identified causative mutations in patients from 10 different families, which were later verified by Sanger sequencing and co-segregation analyses. Specifically, we detected pathogenic DNA variants (∼50% novel mutations) in the genes RP1, USH2A, CNGB3, NMNAT1, CHM, and ABCA4, responsible for retinitis pigmentosa, Usher syndrome, achromatopsia, Leber congenital amaurosis, choroideremia, or recessive Stargardt/cone-rod dystrophy cases. Conclusions/Significance Despite the absence of genetic information from other family members that could help excluding nonpathogenic DNA variants, we could detect causative mutations in a variety of genes known to represent a wide spectrum of clinical phenotypes in 83% of the patients analyzed. Considering the constant drop in costs for human exome sequencing and the relative simplicity of the analyses made, this technique could represent a valuable tool for molecular diagnostics or genetic research, even in cases for which no genotypes from family members are available.
Investigative Ophthalmology & Visual Science | 2009
F. N. Boonstra; C. E. van Nouhuys; J. Schuil; I. J. de Wijs; K. P. van der Donk; Konstantinos Nikopoulos; Arijit Mukhopadhyay; H. Scheffer; Mauk A.D. Tilanus; F.P.M. Cremers; Lies H. Hoefsloot
PURPOSE To describe the ophthalmic characteristics and to identify the molecular cause of FEVR in a cohort of Dutch probands and their family members. METHODS Twenty families with familial exudative vitreoretinopathy (FEVR) comprising 83 affected and nonaffected individuals were studied. Based on the presence of an avascular zone, the clinical diagnosis was made and biometric data of the posterior pole of 57 patients and family members were obtained by the analysis of fundus photographs and compared with the data of 40 controls. The FZD4, LRP5, and NDP genes were screened for mutations in one affected individual per family. The segregation of the gene variants was studied in the corresponding families. RESULTS Forty of 83 individuals showed an avascular zone, the most evident clinical sign of FEVR, five showed major signs of FEVR, and 38 persons were not clinically affected. Compared with the control subjects the patients with FEVR had a significantly larger disc-to-macula distance and a significantly smaller optic disc. In 8 of 20 families, a FZD4 mutation was identified, in 2 a mutation in the LRP5 gene, and in 2 a mutation in the NDP gene. Three known and five novel mutations were identified. Nonpenetrance was observed in 26% of the mutation carriers. CONCLUSIONS Significant anatomic differences were identified between the eyes of patients with FEVR with an avascular zone, when compared with those of the control subjects. In patients with an avascular zone, the optic disc was smaller and the disc-to-macula distance larger than in the control subjects. In 60% of the probands, mutations were identified in one of the three known FEVR genes.
Investigative Ophthalmology & Visual Science | 2011
Konstantinos Nikopoulos; Isabelle Schrauwen; Marleen Simon; Rob W.J. Collin; Marc Veckeneer; Kathelijn Keymolen; Guy Van Camp; Frans P.M. Cremers; L. Ingeborgh van den Born
PURPOSE To investigate COL9A1 in two families suggestive of autosomal recessive Stickler syndrome and to delineate the associated phenotype. METHODS The probands of two consanguineous autosomal recessive Stickler families were evaluated for homozygosity using SNP microarray in one and haplotype analysis in the other. Subsequently, the entire COL9A1 open reading frame was analyzed by DNA sequencing in all members of the respective families. Several family members were investigated for dysmorphic features as well as ophthalmic, audiologic, and radiologic abnormalities. RESULTS A novel homozygous COL9A1 mutation (p.R507X) was identified in two affected Turkish sisters, and the previously published mutation (p.R295X) was found in a Moroccan boy. Ophthalmic assessment revealed myopia, cataracts, distinct vitreous changes, progressive chorioretinal degeneration, and exudative and rhegmatogenous retinal detachments. All three had sensorineural hearing loss and epiphyseal dysplasia. Intervertebral disc bulging was observed in one patient and in two heterozygous carriers of the p.R507X mutation. CONCLUSIONS A second, novel mutation was identified in COL9A1, causing autosomal recessive Stickler syndrome together with the previously described nucleotide change in two separate families. Although the overall phenotype was comparable to autosomal dominant Stickler, vitreous changes that may enable recognition of patients who are likely to carry mutations in COL9A1 were identified, and exudative retinal detachment was observed as a new finding in Stickler syndrome.
American Journal of Human Genetics | 2016
Frauke Coppieters; Giulia Ascari; Katharina Dannhausen; Konstantinos Nikopoulos; Frank Peelman; Marcus Karlstetter; Mingchu Xu; Cécile Brachet; Isabelle Meunier; Miltiadis K. Tsilimbaris; Chrysanthi Tsika; Styliani V. Blazaki; Sarah Vergult; Pietro Farinelli; Thalia Van Laethem; Miriam Bauwens; Marieke De Bruyne; Rui Chen; Thomas Langmann; Ruifang Sui; Françoise Meire; Carlo Rivolta; Christian P. Hamel; Bart P. Leroy; Elfride De Baere
Inherited retinal dystrophies (iRDs) are a group of genetically and clinically heterogeneous conditions resulting from mutations in over 250 genes. Here, homozygosity mapping and whole-exome sequencing (WES) in a consanguineous family revealed a homozygous missense mutation, c.973C>T (p.His325Tyr), in RCBTB1. In affected individuals, it was found to segregate with retinitis pigmentosa (RP), goiter, primary ovarian insufficiency, and mild intellectual disability. Subsequent analysis of WES data in different cohorts uncovered four additional homozygous missense mutations in five unrelated families in whom iRD segregates with or without syndromic features. Ocular phenotypes ranged from typical RP starting in the second decade to chorioretinal dystrophy with a later age of onset. The five missense mutations affect highly conserved residues either in the sixth repeat of the RCC1 domain or in the BTB1 domain. A founder haplotype was identified for mutation c.919G>A (p.Val307Met), occurring in two families of Mediterranean origin. We showed ubiquitous mRNA expression of RCBTB1 and demonstrated predominant RCBTB1 localization in human inner retina. RCBTB1 was very recently shown to be involved in ubiquitination, more specifically as a CUL3 substrate adaptor. Therefore, the effect on different components of the CUL3 and NFE2L2 (NRF2) pathway was assessed in affected individuals’ lymphocytes, revealing decreased mRNA expression of NFE2L2 and several NFE2L2 target genes. In conclusion, our study puts forward mutations in RCBTB1 as a cause of autosomal-recessive non-syndromic and syndromic iRD. Finally, our data support a role for impaired ubiquitination in the pathogenetic mechanism of RCBTB1 mutations.
Scientific Reports | 2015
Muhammad Arif Nadeem Saqib; Konstantinos Nikopoulos; Ehsan Ullah; Falak Sher Khan; Jamila Iqbal; Rabia Bibi; Afeefa Jarral; Sundus Sajid; Koji M. Nishiguchi; Giulia Venturini; Muhammad Ansar; Carlo Rivolta
Inherited retinal dystrophies are phenotypically and genetically heterogeneous. This extensive heterogeneity poses a challenge when performing molecular diagnosis of patients, especially in developing countries. In this study, we applied homozygosity mapping as a tool to reduce the complexity given by genetic heterogeneity and identify disease-causing variants in consanguineous Pakistani pedigrees. DNA samples from eight families with autosomal recessive retinal dystrophies were subjected to genome wide homozygosity mapping (seven by SNP arrays and one by STR markers) and genes comprised within the detected homozygous regions were analyzed by Sanger sequencing. All families displayed consistent autozygous genomic regions. Sequence analysis of candidate genes identified four previously-reported mutations in CNGB3, CNGA3, RHO, and PDE6A, as well as three novel mutations: c.2656C > T (p.L886F) in RPGRIP1, c.991G > C (p.G331R) in CNGA3, and c.413-1G > A (IVS6-1G > A) in CNGB1. This latter mutation impacted pre-mRNA splicing of CNGB1 by creating a -1 frameshift leading to a premature termination codon. In addition to better delineating the genetic landscape of inherited retinal dystrophies in Pakistan, our data confirm that combining homozygosity mapping and candidate gene sequencing is a powerful approach for mutation identification in populations where consanguineous unions are common.
American Journal of Human Genetics | 2016
Konstantinos Nikopoulos; Pietro Farinelli; Basilio Giangreco; Chrysanthi Tsika; Beryl Royer-Bertrand; Martial Mbefo; Nicola Bedoni; Ulrika Kjellström; Ikram El Zaoui; Silvio Alessandro Di Gioia; Sara Balzano; Katarina Cisarova; Andrea Messina; Sarah Decembrini; Sotiris Plainis; Styliani V. Blazaki; Muhammad Imran Khan; Shazia Micheal; Karsten Boldt; Marius Ueffing; Alexandre Moulin; Frans P.M. Cremers; Ronald Roepman; Yvan Arsenijevic; Miltiadis K. Tsilimbaris; Sten Andréasson; Carlo Rivolta
Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa.
Human Molecular Genetics | 2016
Nicola Bedoni; Lonneke Haer-Wigman; Veronika Vaclavik; Viet H. Tran; Pietro Farinelli; Sara Balzano; Beryl Royer-Bertrand; Mohammed El-Asrag; Olivier Bonny; Christos Ikonomidis; Yan Litzistorf; Konstantinos Nikopoulos; Georgia G. Yioti; Maria Stefaniotou; Martin McKibbin; Adam P. Booth; Jamie M Ellingford; Graeme C.M. Black; Carmel Toomes; Chris F. Inglehearn; Carel B. Hoyng; Nathalie Bax; Caroline C. W. Klaver; Alberta A.H.J. Thiadens; Fabien Murisier; Daniel F. Schorderet; Manir Ali; Frans P.M. Cremers; Sten Andréasson; Francis L. Munier
Hereditary retinal degenerations encompass a group of genetic diseases characterized by extreme clinical variability. Following next-generation sequencing and autozygome-based screening of patients presenting with a peculiar, recessive form of cone-dominated retinopathy, we identified five homozygous variants [p.(Asp594fs), p.(Gln117*), p.(Met712fs), p.(Ile756Phe), and p.(Glu543Lys)] in the polyglutamylase-encoding gene TTLL5, in eight patients from six families. The two male patients carrying truncating TTLL5 variants also displayed a substantial reduction in sperm motility and infertility, whereas those carrying missense changes were fertile. Defects in this polyglutamylase in humans have recently been associated with cone photoreceptor dystrophy, while mouse models carrying truncating mutations in the same gene also display reduced fertility in male animals. We examined the expression levels of TTLL5 in various human tissues and determined that this gene has multiple viable isoforms, being highly expressed in testis and retina. In addition, antibodies against TTLL5 stained the basal body of photoreceptor cells in rat and the centrosome of the spermatozoon flagellum in humans, suggesting a common mechanism of action in these two cell types. Taken together, our data indicate that mutations in TTLL5 delineate a novel, allele-specific syndrome causing defects in two as yet pathogenically unrelated functions, reproduction and vision.