Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konstantinos P. Giapis is active.

Publication


Featured researches published by Konstantinos P. Giapis.


Journal of Vacuum Science & Technology B | 1997

On the origin of the notching effect during etching in uniform high density plasmas

Gyeong S. Hwang; Konstantinos P. Giapis

We present a two-dimensional Monte Carlo simulation of profile evolution during the overetching step of polysilicon-on-insulator structures, which considers explicitly (a) electric field effects during the charging transient, (b) etching reactions of energetic ions impinging on the poly-Si, and (c) forward inelastic scattering effects. Realistic energy and angular distributions for ions and electrons are used in trajectory calculations through local electric fields near and in the microstructure. Transient charging of exposed insulator surfaces is found to profoundly affect local sidewall etching (notching). Ion scattering contributions are small but important in matching experimental notch profiles. The model is validated by capturing quantitatively the notch characteristics and also the effects of the line connectivity and open area width on the notch depth, which have been observed experimentally by Nozawa et al. [Jpn. J. Appl. Phys. 34, 2107 (1995)]. Elucidation of the mechanisms responsible for the effect facilitates the prediction of ways to minimize or eliminate notching.


Nano Letters | 2011

Significant Reduction of Thermal Conductivity in Si/Ge Core−Shell Nanowires

Ming Hu; Konstantinos P. Giapis; Javier V. Goicochea; Xiaoliang Zhang; Dimos Poulikakos

We report on the effect of germanium (Ge) coatings on the thermal transport properties of silicon (Si) nanowires using nonequilibrium molecular dynamics simulations. Our results show that a simple deposition of a Ge shell of only 1 to 2 unit cells in thickness on a single crystalline Si nanowire can lead to a dramatic 75% decrease in thermal conductivity at room temperature compared to an uncoated Si nanowire. By analyzing the vibrational density states of phonons and the participation ratio of each specific mode, we demonstrate that the reduction in the thermal conductivity of Si/Ge core-shell nanowire stems from the depression and localization of long-wavelength phonon modes at the Si/Ge interface and of high frequency nonpropagating diffusive modes.


Science | 2005

Electrowetting in Carbon Nanotubes

Jinyu Chen; A. Kutana; Charles Patrick Collier; Konstantinos P. Giapis

We demonstrate reversible wetting and filling of open single-wall carbon nanotubes with mercury by means of electrocapillary pressure originating from the application of a potential across an individual nanotube in contact with a mercury drop. Wetting improves the conductance in both metallic and semiconducting nanotube probes by decreasing contact resistance and forming a mercury nanowire inside the nanotube. Molecular dynamics simulations corroborate the electrocapillarity-driven filling process and provide estimates for the imbibition speed and electrocapillary pressure.


Journal of Applied Physics | 2002

Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition

R. Mohan Sankaran; Konstantinos P. Giapis

Extending the principle of operation of hollow cathode microdischarges to a tube geometry has allowed the formation of stable, high-pressure plasma microjets in a variety of gases including Ar, He, and H2. Direct current discharges are ignited between stainless steel capillary tubes (d = 178 µm) which are operated as the cathode and a metal grid or plate that serves as the anode. Argon plasma microjets can be sustained in ambient air with plasma voltages as low as 260 V for cathode-anode gaps of 0.5 mm. At larger operating voltage, this gap can be extended up to several millimeters. Using a heated molybdenum substrate as the anode, plasma microjets in CH4/H2 mixtures have been used to deposit diamond crystals and polycrystalline films. Micro-Raman spectroscopy of these films shows mainly sp3 carbon content with slight shifting of the diamond peak due to internal stresses. Optical emission spectroscopy of the discharges used in the diamond growth experiments confirms the presence of atomic hydrogen and CH radicals.


Applied Physics Letters | 2001

Maskless etching of silicon using patterned microdischarges

R. M. Sankaran; Konstantinos P. Giapis

Microdischarges in flexible copper-polyimide structures with hole diameters of 200 µm have been used as stencil masks to pattern bare silicon in CF4/Ar chemistry. The discharges were operated at 20 Torr using the substrate as the cathode, achieving etch rates greater than 7 µm/min. Optical emission spectroscopy provides evidence of excited fluorine atoms. The etch profiles show a peculiar shape attributed to plasma expansion into the etched void. Forming discharges in multiple hole and line shapes permits direct pattern transfer in silicon and could be an alternative to ultrasonic milling and laser drilling.


Journal of Vacuum Science and Technology | 1995

Hyperthermal neutral beam etching

Konstantinos P. Giapis; Teresa A. Moore; Timothy K. Minton

A pulsed beam of hyperthermal fluorine atoms with an average translational energy of 4.8 eV has been used to demonstrate anisotropic etching of Si. For 1.4 Hz operation, a room-temperature etch rate of 300 A/min for Si(100) has been measured at a distance of 30 cm from the source. A 14% undercutting for room-temperature etching of Novolac-masked Si features was achieved under single-collision conditions, with no detectable mask erosion. Translational energy and angular distributions of scattered fluorine atoms during steady-state etching of Si by a normal-incidence, collimated beam demonstrate that unreacted F atoms can scatter inelastically, retaining a significant fraction of their initial kinetic energies. The observed undercutting can be explained by secondary impingement of these high-energy F atoms, which are more reactive upon interaction with the sidewalls than would be expected if they desorbed from the surface at thermal energies after full accommodation. Time-of-flight distributions of volatile reaction products were also collected, and they show evidence for a dominant nonthermal reaction mechanism of the incident atoms with the surface in addition to a thermal reaction channel.


Journal of Physics D | 2003

High-pressure micro-discharges in etching and deposition applications

R. Mohan Sankaran; Konstantinos P. Giapis

High-pressure micro-discharges are promising sources of light, ions, and radicals and offer some advantages in materials processing applications as compared to other more conventional discharges. We review here results from etching experiments using stencil masks where the discharge is formed only in the pattern cutout. The mask consists of a thin metal-dielectric structure and is pressed against a Si wafer, which becomes part of the electric circuit. Pattern transfer takes place, albeit the profile shape appears to be limited by the expansion of the plasma into the etched hole at long etch times. We also review experiments on using micro-discharges as sources of radicals for materials deposition applications. In the latter case, the micro-discharges form in metal capillary tubes permitting incorporation of gas flow and a short reaction zone that can be controlled to favour production of specific radicals. We demonstrate these concepts by using CH4/H2 chemistry for diamond deposition on a heated Mo substrate. Good quality micro- and nano-diamond crystals could be produced.


Aerosol Science and Technology | 2011

Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification

Jingkun Jiang; Michel Attoui; Michael Heim; Nicholas A. Brunelli; Peter H. McMurry; Gerhard Kasper; Konstantinos P. Giapis; Guillaume Mouret

The transfer functions and penetrations of five differential mobility analyzers (DMAs) for sub-2 nm particle classification were evaluated in this study. These DMAs include the TSI nanoDMA, the Caltech radial DMA (RDMA) and nanoRDMA, the Grimm nanoDMA, and the Karlsruhe-Vienna DMA. Measurements were done using tetra-alkyl ammonium ion standards with mobility diameters of 1.16, 1.47, and 1.70 nm. These monomobile ions were generated by electrospray followed by high resolution mobility classification. Measurements were focused at an aerosol-to-sheath flow ratio of 0.1. A data inversion routine was developed to obtain the true transfer function for each test DMA, and these measured transfer functions were compared with theory. DMA penetration efficiencies were also measured. An approximate model for diffusional deposition, based on the modified Gormley and Kennedy equation using an effective length, is given for each test DMA. These results quantitatively characterize the performance of the test DMAs in classifying sub-2 nm particles and can be readily used for DMA data inversion.


Journal of Applied Physics | 1990

Real‐time monitoring of low‐temperature hydrogen plasma passivation of GaAs

Richard A. Gottscho; Bryan L. Preppernau; S. J. Pearton; A. Bruce Emerson; Konstantinos P. Giapis

By monitoring photoluminescence (PL) in real time and in situ, hydrogen plasma operating conditions have been optimized for surface passivation of native-oxide-contaminated GaAs. PL enhancement is critically dependent on exposure time and pressure because of competition between plasma passivation and damage. Optimal exposure time and pressure are inversely related; thus, previous reports of ineffective passivation at room temperature result from overexposure at low pressure. Plasma treatment is effective in removing As to leave a Ga-rich oxide; removal of excess As increases the photoluminescence yield as the corresponding near-midgap-state density is reduced. Passivation is stable for more than a month. These results demonstrate the power of real time monitoring for optimizing plasma processing of optoelectronic materials.


Nano Letters | 2015

Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects

Dmitry Alexeev; Jie Chen; Jens Honore Walther; Konstantinos P. Giapis; Panagiotis Angelikopoulos; Petros Koumoutsakos

The Kapitza resistance (RK) between few-layer graphene (FLG) and water was studied using molecular dynamics simulations. The RK was found to depend on the number of the layers in the FLG though, surprisingly, not on the water block thickness. This distinct size dependence is attributed to the large difference in the phonon mean free path between the FLG and water. Remarkably, RK is strongly dependent on the layering of water adjacent to the FLG, exhibiting an inverse proportionality relationship to the peak density of the first water layer, which is consistent with better acoustic phonon matching between FLG and water. These findings suggest novel ways to engineer the thermal transport properties of solid-liquid interfaces by controlling and regulating the liquid layering at the interface.

Collaboration


Dive into the Konstantinos P. Giapis's collaboration.

Top Co-Authors

Avatar

Gyeong S. Hwang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Kutana

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicholas A. Brunelli

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Mohan Sankaran

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

M. J. Gordon

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Charles Patrick Collier

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge