Konstantinos Ritis
Democritus University of Thrace
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Konstantinos Ritis.
Journal of Immunology | 2006
Konstantinos Ritis; Michael Doumas; Dimitrios Mastellos; Anastasia Micheli; Stavros Giaglis; Paola Magotti; Stavros Rafail; Georgios Kartalis; Paschalis Sideras; John D. Lambris
Neutrophils and complement are key sentinels of innate immunity and mediators of acute inflammation. Recent studies have suggested that inflammatory processes modulate thrombogenic pathways. To date, the potential cross-talk between innate immunity and thrombosis and the precise molecular pathway by which complement and neutrophils trigger the coagulation process have remained elusive. In this study, we demonstrate that antiphospholipid Ab-induced complement activation and downstream signaling via C5a receptors in neutrophils leads to the induction of tissue factor (TF), a key initiating component of the blood coagulation cascade. TF expression by neutrophils was associated with an enhanced procoagulant activity, as verified by a modified prothrombin time assay inhibited by anti-TF mAb. Inhibition studies using the complement inhibitor compstatin revealed that complement activation is triggered by antiphospholipid syndrome (APS) IgG and leads to the induction of a TF-dependent coagulant activity. Blockade studies using a selective C5a receptor antagonist and stimulation of neutrophils with recombinant human C5a demonstrated that C5a, and its receptor C5aR, mediate the expression of TF in neutrophils and thereby significantly enhance the procoagulant activity of neutrophils exposed to APS serum. These results identify a novel cross-talk between the complement and coagulation cascades that can potentially be exploited therapeutically in the treatment of APS and other complement-associated thrombotic diseases.
PLOS ONE | 2011
Ioannis Mitroulis; Konstantinos Kambas; Akrivi Chrysanthopoulou; Panagiotis Skendros; Eirini Apostolidou; Ioannis Kourtzelis; Georgios I. Drosos; Dimitrios T. Boumpas; Konstantinos Ritis
Background Gout is a prevalent inflammatory arthritis affecting 1–2% of adults characterized by activation of innate immune cells by monosodium urate (MSU) crystals resulting in the secretion of interleukin-1β (IL-1β). Since neutrophils play a major role in gout we sought to determine whether their activation may involve the formation of proinflammatory neutrophil extracellular traps (NETs) in relation to autophagy and IL-1β. Methodology/Principal Findings Synovial fluid neutrophils from six patients with gout crisis and peripheral blood neutrophils from six patients with acute gout and six control subjects were isolated. MSU crystals, as well as synovial fluid or serum obtained from patients with acute gout, were used for the treatment of control neutrophils. NET formation was assessed using immunofluorescence microscopy. MSU crystals or synovial fluid or serum from patients induced NET formation in control neutrophils. Importantly, NET production was observed in neutrophils isolated from synovial fluid or peripheral blood from patients with acute gout. NETs contained the alarmin high mobility group box 1 (HMGB1) supporting their pro-inflammatory potential. Inhibition of phosphatidylinositol 3-kinase signaling or phagolysosomal fusion prevented NET formation, implicating autophagy in this process. NET formation was driven at least in part by IL-1β as demonstrated by experiments involving IL-1β and its inhibitor anakinra. Conclusions/Significance These findings document for the first time that activation of neutrophils in gout is associated with the formation of proinflammatory NETs and links this process to both autophagy and IL-1β. Modulation of the autophagic machinery may represent an additional therapeutic study in crystalline arthritides.
European Journal of Internal Medicine | 2010
Ioannis Mitroulis; Panagiotis Skendros; Konstantinos Ritis
NLRP3 inflammasome activation and IL-1beta secretion have recently emerged as a central mechanism in the pathogenesis of disease. Genetically defined syndromes like cryopyrin-associated periodic syndromes (CAPS, cryopyrinopathies) and familial Mediterranean fever (FMF) or diseases associated with NLRP3 activation by danger signals like gout, pseudogout, Alzheimers disease or type 2 diabetes are included in this group of diseases. The contribution of anakinra, a recombinant, nonglycosylated human IL-1 receptor antagonist, in both the identification and treatment of such syndromes was considerable. Recently, rilonacept, a long-acting IL-1 receptor fusion protein, and canakinumab, a fully humanized anti-IL-1beta monoclonal antibody, have been developed, with the intention to further extent IL-1beta inhibition treatment strategies to a broader spectrum of disorders beyond the characterized autoinflammatory syndromes, offering a more favorable administration profile. On the other hand, the developed caspase-1 inhibitors, even though effective in experimental models, were not proven efficient in the treatment of inflammatory diseases.
PLOS ONE | 2012
Konstantinos Kambas; Ioannis Mitroulis; Eirini Apostolidou; Andreas Girod; Akrivi Chrysanthopoulou; Ioannis Pneumatikos; Panagiotis Skendros; Ioannis Kourtzelis; Maria Koffa; Ioannis Kotsianidis; Konstantinos Ritis
Background Sepsis is associated with systemic inflammatory responses and induction of coagulation system. Neutrophil extracellular traps (NETs) constitute an antimicrobial mechanism, recently implicated in thrombosis via platelet entrapment and aggregation. Methodology/Principal Findings In this study, we demonstrate for the first time the localization of thrombogenic tissue factor (TF) in NETs released by neutrophils derived from patients with gram-negative sepsis and normal neutrophils treated with either serum from septic patients or inflammatory mediators involved in the pathogenesis of sepsis. Localization of TF in acidified autophagosomes was observed during this process, as indicated by positive LC3B and LysoTracker staining. Moreover, phosphatidylinositol 3-kinase inhibition with 3-MA or inhibition of endosomal acidification with bafilomycin A1 hindered the release of TF-bearing NETs. TF present in NETs induced thrombin generation in culture supernatants, which further resulted in protease activated receptor-1 signaling. Conclusions/Significance This study demonstrates the involvement of autophagic machinery in the extracellular delivery of TF in NETs and the subsequent activation of coagulation cascade, providing evidence for the implication of this process in coagulopathy and inflammatory response in sepsis.
Annals of the Rheumatic Diseases | 2014
Konstantinos Kambas; Akrivi Chrysanthopoulou; Dimitrios Vassilopoulos; Eirini Apostolidou; Panagiotis Skendros; Andreas Girod; Stella Arelaki; Marios Froudarakis; Lydia Nakopoulou; Alexandra Giatromanolaki; Prodromos Sidiropoulos; Maria Koffa; Dimitrios T. Boumpas; Konstantinos Ritis; Ioannis Mitroulis
Objectives Antineutrophil cytoplasmic antibody (ANCA) associated vasculitis (AAV) is characterised by neutrophil activation. An elevated prevalence of venous thromboembolic events has been reported in AAV. Because of the critical role of neutrophils in inflammation associated thrombosis, we asked whether neutrophil tissue factor (TF) may be implicated in the thrombotic diathesis in AAV. Methods Neutrophils from four patients and sera from 17 patients with ANCA associated vasculitis with active disease and remission were studied. TF expression was assessed by immunoblotting and confocal microscopy. Circulating DNA levels were evaluated. TF expressing microparticles (MPs) were measured by flow cytometry and thrombin–antithrombin complex levels by ELISA. Results Peripheral blood neutrophils from four patients with active disease expressed elevated TF levels and released TF expressing neutrophil extracellular traps (NETs) and MPs. TF positive NETs were released by neutrophils isolated from the bronchoalveolar lavage and were detected in nasal and renal biopsy specimens. Elevated levels of circulating DNA and TF expressing neutrophil derived MPs were further observed in sera from patients with active disease. Induction of remission attenuated the aforementioned effects. Control neutrophils treated with sera from patients with active disease released TF bearing NETs and MPs which were abolished after IgG depletion. Treatment of control neutrophils with isolated IgG from sera from patients with active disease also resulted in the release of TF bearing NETs. TF implication in MP dependent thrombin generation was demonstrated by antibody neutralisation studies. Conclusions Expression of TF in NETs and neutrophil derived MPs proposes a novel mechanism for the induction of thrombosis and inflammation in active AAV.
European Heart Journal | 2015
Dimitrios Stakos; Konstantinos Kambas; Theocharis Konstantinidis; Ioannis Mitroulis; Eirini Apostolidou; Stella Arelaki; Victoria Tsironidou; Alexandra Giatromanolaki; Panagiotis Skendros; Stavros Konstantinides; Konstantinos Ritis
Neutrophils are involved in the pathophysiology of infracted coronary arteries in STEMI via NET structures. Platelets, activated by thrombin, are required for NET formation, while the integrity of NET scaffold contributes to the functionality of NET-bound TF. The blockage of NET formation or local neutralization of NET-mediated TF signalling constitutes candidate therapeutic targets.
European Journal of Immunology | 2010
Ioannis Mitroulis; Ioannis Kourtzelis; Konstantinos Kambas; Stavros Rafail; Akrivi Chrysanthopoulou; Matthaios Speletas; Konstantinos Ritis
The induction of the autophagy machinery, a process for the catabolism of cytosolic proteins and organelles, constitutes a crucial mechanism in innate immunity. However, the involvement of autophagy in human neutrophils and the possible inducers of this process have not been completely elucidated. In this study, the induction of autophagy was examined in human neutrophils treated with various activators and detected by the formation of acidified autophagosomes through monodansylcadaverine staining and via LC‐3B conversion screened by immunoblotting and immunofluorescence confocal microscopy. In addition, the expression of the ATG genes was assessed by real‐time RT‐PCR. We provide evidence that autophagy is implicated in human neutrophils in both a phagocytosis‐independent (rapamycin, TLR agonists, PMA) and phagocytosis (Escherichia coli)‐dependent initiation manner. ROS activation is a positive mechanism for autophagy induction in the case of PMA, TLR activation and phagocytosis. Furthermore, LC3B gene expression was uniformly upregulated, indicating a transcriptional level of regulation for the autophagic machinery. This study provides a stepping stone toward further investigation of autophagy in neutrophil‐driven inflammatory disorders.
Journal of Immunology | 2008
Konstantinos Kambas; Maciej M. Markiewski; Ioannis Pneumatikos; Stavros Rafail; Vassiliki Theodorou; Dimitrios Konstantonis; Ioannis Kourtzelis; Michael Doumas; Paola Magotti; Robert A. DeAngelis; John D. Lambris; Konstantinos Ritis
Acute respiratory distress syndrome (ARDS) is characterized by the presence of fibrin-rich inflammatory exudates in the intra-alveolar spaces and the extensive migration of neutrophils into alveoli of the lungs. Tissue factor (TF)-dependent procoagulant properties of bronchoalveaolar lavage fluid (BALF) obtained from ARDS patients favor fibrin deposition, and are likely the result of cross-talk between inflammatory mediators and hemostatic mechanisms. However, the regulation of these interactions remains elusive. Prompted by previous findings suggesting that neutrophils, under certain inflammatory conditions, can express functional TF, we investigated the contribution of intra-alveolar neutrophils to the procoagulant properties of BALF from patients with ARDS. Our results confirm that the procoagulant properties of BALF from ARDS patients are the result of TF induction, and further indicate that BALF neutrophils are a main source of TF in intra-alveolar fluid. We also found that BALF neutrophils in these patients express significantly higher levels of TF than peripheral blood neutrophils. These results suggest that the alveolar microenvironment contributes to TF induction in ARDS. Additional experiments indicated that the ability of BALF to induce TF expression in neutrophils from healthy donors can be abolished by inhibiting C5a or TNF-α signaling, suggesting a primary role for these inflammatory mediators in the up-regulation of TF in alveolar neutrophils in ARDS. This cross-talk between inflammatory mediators and the induction of TF expression in intra-alveolar neutrophils may be a potential target for novel therapeutic strategies to limit ARDS-associated disturbances of coagulation.
The Journal of Pathology | 2014
Akrivi Chrysanthopoulou; Ioannis Mitroulis; Eirini Apostolidou; Stella Arelaki; Dimitrios Mikroulis; Theocharis Konstantinidis; Efthimios Sivridis; Maria Koffa; Alexandra Giatromanolaki; Dimitrios T. Boumpas; Konstantinos Ritis; Konstantinos Kambas
Neutrophil activation by inflammatory stimuli and the release of extracellular chromatin structures (neutrophil extracellular traps – NETs) have been implicated in inflammatory disorders. Herein, we demonstrate that NETs released by neutrophils treated either with fibrosis‐related agents, such as cigarette smoke, magnesium silicate, bleomycin, or with generic NET inducers, such as phorbol 12‐myristate 13‐acetate, induced activation of lung fibroblasts (LFs) and differentiation into myofibroblast (MF) phenotype. Interestingly, the aforementioned agents or IL‐17 (a primary initiator of inflammation/fibrosis) had no direct effect on LF activation and differentiation. MFs treated with NETs demonstrated increased connective tissue growth factor expression, collagen production, and proliferation/migration. These fibrotic effects were significantly decreased after degradation of NETs with DNase1, heparin or myeloperoxidase inhibitor, indicating the key role of NET‐derived components in LF differentiation and function. Furthermore, IL‐17 was expressed in NETs and promoted the fibrotic activity of differentiated LFs but not their differentiation, suggesting that priming by DNA and histones is essential for IL‐17‐driven fibrosis. Additionally, autophagy was identified as the orchestrator of NET formation, as shown by inhibition studies using bafilomycin A1 or wortmannin. The above findings were further supported by the detection of NETs in close proximity to alpha‐smooth muscle actin (α‐SMA)‐expressing fibroblasts in biopsies from patients with fibrotic interstitial lung disease or from skin scar tissue. Together, these data suggest that both autophagy and NETs are involved not only in inflammation but also in the ensuing fibrosis and thus may represent potential therapeutic targets in human fibrotic diseases. Copyright
Clinical Genetics | 2007
Stavros Giaglis; Vassilios Papadopoulos; Konstantinos Kambas; Michael Doumas; Victoria Tsironidou; Stavros Rafail; Georgios Kartalis; Matthaios Speletas; Konstantinos Ritis
Familial Mediterranean fever (FMF) is a disease characterized by recurrent, self‐limiting bouts of fever and serositis and caused by altered pyrin due to mutated MEFV gene. FMF is common in the Mediterranean Basin populations, although with varying genetic patterns. The spectrum and clinical significance of MEFV alterations in Greece has yet not been elucidated. The aim of this study was to analyze the spectrum of MEFV alterations in FMF patients and healthy individuals in Greece. A cohort of 152 Greek FMF patients along with 140 Greek healthy controls was enrolled. Non‐isotopic RNase cleavage assay (NIRCA) and sequencing allowed mutational and haplotypic analysis of the entire coding sequence of MEFV. The arlequin 2.0, dnasp 4.0 and phylip software were used for population genetics analysis. Among patients, 127 (83.6%) carried at least one known mutation. The most common mutations identified were M694V (38.1%), M680I (19.7%), V726A (12.2%), E148Q (10.9%) and E230K (6.1%). The total carrier rate among healthy individuals was 0.7%. The presence of R202Q homozygosity in 12 of the remaining 25 MEFV negative FMF patients might be considered as disease related in Greeks. Population genetics analysis revealed that Greeks rely closer to the eastern rather than western populations of the Mediterranean Basin.