Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konstantinos Vougas is active.

Publication


Featured researches published by Konstantinos Vougas.


Nature Cell Biology | 2013

Functional interplay between the DNA-damage-response kinase ATM and ARF tumour suppressor protein in human cancer

Georgia Velimezi; Michalis Liontos; Konstantinos Vougas; Theodoros Roumeliotis; Jirina Bartkova; Maria Sideridou; Ayguel Dereli-Oz; Maciej Kocylowski; Ioannis S. Pateras; Kostas Evangelou; Athanassios Kotsinas; Ines Orsolic; Sladana Bursac; Maja Cokaric-Brdovcak; Vassilis Zoumpourlis; Dimitris Kletsas; George Papafotiou; Apostolos Klinakis; Siniša Volarević; Wei Gu; Jiri Bartek; Thanos D. Halazonetis; Vassilis G. Gorgoulis

The DNA damage response (DDR) pathway and ARF function as barriers to cancer development. Although commonly regarded as operating independently of each other, some studies proposed that ARF is positively regulated by the DDR. Contrary to either scenario, we found that in human oncogene-transformed and cancer cells, ATM suppressed ARF protein levels and activity in a transcription-independent manner. Mechanistically, ATM activated protein phosphatase 1, which antagonized Nek2-dependent phosphorylation of nucleophosmin (NPM), thereby liberating ARF from NPM and rendering it susceptible to degradation by the ULF E3-ubiquitin ligase. In human clinical samples, loss of ATM expression correlated with increased ARF levels and in xenograft and tissue culture models, inhibition of ATM stimulated the tumour-suppressive effects of ARF. These results provide insights into the functional interplay between the DDR and ARF anti-cancer barriers, with implications for tumorigenesis and treatment of advanced tumours.


Nature Cell Biology | 2016

Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing

Panagiotis Galanos; Konstantinos Vougas; David Walter; Alexander Polyzos; Apolinar Maya-Mendoza; Emma J. Haagensen; Antonis Kokkalis; Fani-Marlen Roumelioti; Sarantis Gagos; Maria Tzetis; Begoña Canovas; Ana Igea; Akshay K. Ahuja; Ralph Zellweger; Sofia Havaki; Emanuel Kanavakis; Dimitris Kletsas; Igor B. Roninson; Spiros D. Garbis; Massimo Lopes; Angel R. Nebreda; Dimitris Thanos; J. Julian Blow; Paul A. Townsend; Claus Storgaard Sørensen; Jiri Bartek; Vassilis G. Gorgoulis

The cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) is a cell-cycle checkpoint effector and inducer of senescence, regulated by p53. Yet, evidence suggests that p21 could also be oncogenic, through a mechanism that has so far remained obscure. We report that a subset of atypical cancerous cells strongly expressing p21 showed proliferation features. This occurred predominantly in p53-mutant human cancers, suggesting p53-independent upregulation of p21 selectively in more aggressive tumour cells. Multifaceted phenotypic and genomic analyses of p21-inducible, p53-null, cancerous and near-normal cellular models showed that after an initial senescence-like phase, a subpopulation of p21-expressing proliferating cells emerged, featuring increased genomic instability, aggressiveness and chemoresistance. Mechanistically, sustained p21 accumulation inhibited mainly the CRL4–CDT2 ubiquitin ligase, leading to deregulated origin licensing and replication stress. Collectively, our data reveal the tumour-promoting ability of p21 through deregulation of DNA replication licensing machinery—an unorthodox role to be considered in cancer treatment, since p21 responds to various stimuli including some chemotherapy drugs.


Electromagnetic Biology and Medicine | 2012

Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation

Adamantia F. Fragopoulou; Athina Samara; Marianna H. Antonelou; Anta Xanthopoulou; Aggeliki Papadopoulou; Konstantinos Vougas; Eugenia Koutsogiannopoulou; Ema Anastasiadou; Dimitrios J. Stravopodis; Lukas H. Margaritis

The objective of this study was to investigate the effects of two sources of electromagnetic fields (EMFs) on the proteome of cerebellum, hippocampus, and frontal lobe in Balb/c mice following long-term whole body irradiation. Three equally divided groups of animals (6 animals/group) were used; the first group was exposed to a typical mobile phone, at a SAR level range of 0.17–0.37 W/kg for 3 h daily for 8 months, the second group was exposed to a wireless DECT base (Digital Enhanced Cordless Telecommunications/Telephone) at a SAR level range of 0.012–0.028 W/kg for 8 h/day also for 8 months and the third group comprised the sham-exposed animals. Comparative proteomics analysis revealed that long-term irradiation from both EMF sources altered significantly (p < 0.05) the expression of 143 proteins in total (as low as 0.003 fold downregulation up to 114 fold overexpression). Several neural function related proteins (i.e., Glial Fibrillary Acidic Protein (GFAP), Alpha-synuclein, Glia Maturation Factor beta (GMF), and apolipoprotein E (apoE)), heat shock proteins, and cytoskeletal proteins (i.e., Neurofilaments and tropomodulin) are included in this list as well as proteins of the brain metabolism (i.e., Aspartate aminotransferase, Glutamate dehydrogenase) to nearly all brain regions studied. Western blot analysis on selected proteins confirmed the proteomics data. The observed protein expression changes may be related to brain plasticity alterations, indicative of oxidative stress in the nervous system or involved in apoptosis and might potentially explain human health hazards reported so far, such as headaches, sleep disturbance, fatigue, memory deficits, and brain tumor long-term induction under similar exposure conditions.


Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine | 2013

Sleep oxygen desaturation predicts survival in idiopathic pulmonary fibrosis.

Likurgos Kolilekas; Effrosyni D. Manali; Katerina Vlami; Panagiotis Lyberopoulos; Christina Triantafillidou; Konstantinos Kagouridis; Katerina Baou; Sotirios Gyftopoulos; Konstantinos Vougas; Anna Karakatsani; Manos Alchanatis; Spyros Papiris

BACKGROUND Recent studies suggest poor sleep quality in patients with idiopathic pulmonary fibrosis (IPF). However, so far, the impact of IPF-related sleep breathing disorders (SBDs) on survival has not been extensively studied. METHODS In a cohort of 31 (24 males) treatment-naïve, newly diagnosed consecutive IPF patients, we prospectively investigated the relationship of SBD parameters such as apnea-hypopnea index (AHI), maximal difference in oxygen saturation between wakefulness and sleep (maxdiff SpO2), and lowest sleep oxygen saturation (lowest SpO2) with clinical (survival, dyspnea, daytime sleepiness), pulmonary function, submaximal (6-min walk test [6MWT]) and maximal exercise variables (cardiopulmonary exercise test [CPET]), and right ventricular systolic pressure (RVSP). RESULTS Sleep oxygen desaturation exceeded significantly that of maximal exercise (p < 0.001). Maxdiff SpO2 was inversely related to survival, DLCO%, and SpO2 after 6MWT, and directly with dyspnea, AHI, and RVSP. The lowest SpO2 was directly related to survival and to functional (TLC%, DLCO%) as well as submaximal and maximal exercise variables (6MWT distance, SpO2 after 6MWT, peak oxygen consumption/kg, SpO2 at peak exercise), while an inverse association with dyspnea score, AHI, and RVSP was observed. CONCLUSIONS Our findings provide evidence that intermittent sleep oxygen desaturation significantly exceeds that of maximal exercise and is associated with survival in IPF patients. Furthermore, they imply the existence of a link between lung damage and apnea events resulting to the induction and severity of intermittent sleep oxygen desaturation that aggravate pulmonary arterial hypertension and influence IPF survival.


PLOS ONE | 2015

Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for Quantitative Tissue Proteomic Analysis

Agnieszka Latosinska; Konstantinos Vougas; Manousos Makridakis; Julie Klein; William Mullen; Mahmoud Abbas; Konstantinos Stravodimos; Ioannis Katafigiotis; Axel S. Merseburger; Jerome Zoidakis; Harald Mischak; Antonia Vlahou; Vera Jankowski

High resolution proteomics approaches have been successfully utilized for the comprehensive characterization of the cell proteome. However, in the case of quantitative proteomics an open question still remains, which quantification strategy is best suited for identification of biologically relevant changes, especially in clinical specimens. In this study, a thorough comparison of a label-free approach (intensity-based) and 8-plex iTRAQ was conducted as applied to the analysis of tumor tissue samples from non-muscle invasive and muscle-invasive bladder cancer. For the latter, two acquisition strategies were tested including analysis of unfractionated and fractioned iTRAQ-labeled peptides. To reduce variability, aliquots of the same protein extract were used as starting material, whereas to obtain representative results per method further sample processing and MS analysis were conducted according to routinely applied protocols. Considering only multiple-peptide identifications, LC-MS/MS analysis resulted in the identification of 910, 1092 and 332 proteins by label-free, fractionated and unfractionated iTRAQ, respectively. The label-free strategy provided higher protein sequence coverage compared to both iTRAQ experiments. Even though pre-fraction of the iTRAQ labeled peptides allowed for a higher number of identifications, this was not accompanied by a respective increase in the number of differentially expressed changes detected. Validity of the proteomics output related to protein identification and differential expression was determined by comparison to existing data in the field (Protein Atlas and published data on the disease). All methods predicted changes which to a large extent agreed with published data, with label-free providing a higher number of significant changes than iTRAQ. Conclusively, both label-free and iTRAQ (when combined to peptide fractionation) provide high proteome coverage and apparently valid predictions in terms of differential expression, nevertheless label-free provides higher sequence coverage and ultimately detects a higher number of differentially expressed proteins. The risk for receiving false associations still exists, particularly when analyzing highly heterogeneous biological samples, raising the need for the analysis of higher sample numbers and/or application of adjustment for multiple testing.


Molecular & Cellular Proteomics | 2008

Marked Defects in the Expression and Glycosylation of α2-HS Glycoprotein/Fetuin-A in Plasma from Neonates with Intrauterine Growth Restriction Proteomics Screening and Potential Clinical Implications

Panagiotis M. Karamessinis; Ariadne Malamitsi-Puchner; Theodora Boutsikou; Manousos Makridakis; Konstantinos Vougas; Michael Fountoulakis; Antonia Vlahou; George P. Chrousos

Intrauterine growth restriction (IUGR) has been associated with increased perinatal morbidity and mortality and increased morbidity and metabolic abnormalities later in life. IUGR is characterized as the failure of a fetus to achieve his or her genetic growth potential in utero. Altered protein expression profiles associated with IUGR may be informative on the pathologic mechanisms of this condition and might reveal potential markers for postnatal complications. The aim of this study was to compare protein profiles of umbilical cord plasma from IUGR and appropriate for gestational age full-term neonates. Blood samples from doubly clamped umbilical cord at delivery from 10 IUGR and 10 appropriate for gestational age full-term neonates were analyzed by two-dimensional electrophoresis and MS. Prominent changes of the α2-HS glycoprotein/fetuin-A were observed in IUGR cases. Specifically we showed that these changes occur primarily at the level of post-translational modifications of the protein. Using a combination of mass spectrometry and classical biochemical assays, single and heavy chain forms of fetuin-A were found to lack the normally present O-linked sialic acids in IUGR neonates. Fetuin A is a glycoprotein that has been associated with promotion of in vitro cell replication, fetal growth and osteogenesis, and protection from Gram-negative bacterial endotoxins. Prominent defects in glycosylation/sialylation of fetuin-A revealed by our study might be responsible for impaired function of fetuin-A, leading to deficient fetal growth, especially osteogenesis, and/or to the development of complications frequently seen later in the lives of IUGR neonates.


Journal of Proteomics | 2010

Proteomic analysis of amniotic fluid in pregnancies with Klinefelter syndrome foetuses

Athanasios K. Anagnostopoulos; Aggeliki Kolialexi; Ariadni Mavrou; Konstantinos Vougas; Nikos Papantoniou; Aris Antsaklis; Emmanuel Kanavakis; Michael Fountoulakis; George Th. Tsangaris

Klinefelter syndrome is a sex chromosomal abnormality (47, XXY karyotype), occurring approximately in 1 in 1000 male live births. In the present study proteomic analysis was performed in twelve 2nd trimester amniotic fluid samples, eight coming from pregnancies with normal males and four with Klinefelter syndrome foetuses, as shown by routine prenatal cytogenetic analysis. Samples were analysed by 2-DE, coupled with MALDI-TOF-MS analysis. Three proteins (Ceruloplasmin, Alpha-1-antitrypsin and Zinc-alpha-2-glycoprotein) were found to be up-regulated in samples obtained from pregnancies with Klinefelter syndrome foetuses, whereas four proteins (Apolipoprotein A-I, Plasma retinol-binding protein, Gelsolin, and Vitamin D-binding protein) were down regulated when compared to proteins detected in samples from normal foetuses. The differential expression of Ceruloplasmin, Apolipoprotein A-I and Plasma retinol-binding protein was further confirmed by immunoblotting. Since these proteins are likely to cross the placenta barrier and be detected in maternal plasma they could be used as biomarkers for the non-invasive prenatal diagnosis of Klinefelter syndrome.


Journal of Proteome Research | 2008

Proteomic Analysis of Amniotic Fluid in Pregnancies with Turner Syndrome Fetuses

Ariadni Mavrou; Athanasios Anagnostopoulos; Aggeliki Kolialexi; Konstantinos Vougas; N. Papantoniou; Aris Antsaklis; Michael Fountoulakis; George Th. Tsangaris

Turner syndrome, occurring in 1:2500 female births, is caused by the complete or partial absence of one X chromosome. Amniotic fluid supernatant proteins from five second trimester pregnancies with Turner syndrome fetuses and five normal ones were analyzed by 2DE, MALDI-TOF-MS, and Western blot. Serotransferin, lumican, plasma retinol-binding protein, and apolipoprotein A-I were increased in Turner syndrome, while kininogen, prothrombin, and apolipoprotein A-IV were decreased. Since differentially expressed proteins are likely to cross the placenta barrier and be detected in maternal plasma, proteomic analysis may enhance research for noninvasive prenatal diagnosis of Turner syndrome.


PLOS ONE | 2015

Comparison of Depletion Strategies for the Enrichment of Low-Abundance Proteins in Urine

Szymon Filip; Konstantinos Vougas; Jerome Zoidakis; Agnieszka Latosinska; William Mullen; Goce Spasovski; Harald Mischak; Antonia Vlahou; Joachim Jankowski

Proteome analysis of complex biological samples for biomarker identification remains challenging, among others due to the extended range of protein concentrations. High-abundance proteins like albumin or IgG of plasma and urine, may interfere with the detection of potential disease biomarkers. Currently, several options are available for the depletion of abundant proteins in plasma. However, the applicability of these methods in urine has not been thoroughly investigated. In this study, we compared different, commercially available immunodepletion and ion-exchange based approaches on urine samples from both healthy subjects and CKD patients, for their reproducibility and efficiency in protein depletion. A starting urine volume of 500 μL was used to simulate conditions of a multi-institutional biomarker discovery study. All depletion approaches showed satisfactory reproducibility (n=5) in protein identification as well as protein abundance. Comparison of the depletion efficiency between the unfractionated and fractionated samples and the different depletion strategies, showed efficient depletion in all cases, with the exception of the ion-exchange kit. The depletion efficiency was found slightly higher in normal than in CKD samples and normal samples yielded more protein identifications than CKD samples when using both initial as well as corresponding depleted fractions. Along these lines, decrease in the amount of albumin and other targets as applicable, following depletion, was observed. Nevertheless, these depletion strategies did not yield a higher number of identifications in neither the urine from normal nor CKD patients. Collectively, when analyzing urine in the context of CKD biomarker identification, no added value of depletion strategies can be observed and analysis of unfractionated starting urine appears to be preferable.


Journal of Proteome Research | 2010

Potential biomarkers for Turner in maternal plasma: possibility for noninvasive prenatal diagnosis.

Aggeliki Kolialexi; Athanasios Anagnostopoulos; N. Papantoniou; Konstantinos Vougas; Aris Antsaklis; Michael Fountoulakis; Ariadni Mavrou; George Th. Tsangaris

Turner syndrome (TS) is the most common sex chromosome abnormality in females, caused by the complete or partial absence of one X chromosome. To identify biomarkers for TS, we compared the protein composition of maternal plasma samples from pregnant women with normal and TS fetuses, using a proteomic approach consisting of 2D-E separation and MS analysis for the identification of the differentially expressed proteins. Samples were routinely obtained in the second trimester of pregnancy, stored, and used after prenatal determination of the fetal karyotype. Nine proteins (C1S, CO3, CLUS, AFAM, HABP2, IGHA1, HPT, SHBG, and CD5L) were significantly increased in the plasma of women carrying TS fetuses, whereas KNG1, IGJ, and TTHY were decreased. Identified proteins were further evaluated by immunoblot analysis while functional network association was carried out to asses significance. The identification of specific biomarkers may facilitate the development of noninvasive prenatal diagnosis and improve our understanding of the pathology of TS. Nevertheless, testing a larger cohort of pregnant women is necessary to evaluate the relevance of the reported findings.

Collaboration


Dive into the Konstantinos Vougas's collaboration.

Top Co-Authors

Avatar

George Th. Tsangaris

Foundation for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Vassilis G. Gorgoulis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Athanasios Anagnostopoulos

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Effrosyni D. Manali

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Manos Alchanatis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Th. Tsangaris

Foundation for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandros G. Georgakilas

National Technical University of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge