Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koohyar Vahidkhah is active.

Publication


Featured researches published by Koohyar Vahidkhah.


Biophysical Journal | 2014

Platelet dynamics in three-dimensional simulation of whole blood.

Koohyar Vahidkhah; Scott L. Diamond; Prosenjit Bagchi

A high-fidelity computational model using a 3D immersed boundary method is used to study platelet dynamics in whole blood. We focus on the 3D effects of the platelet-red blood cell (RBC) interaction on platelet margination and near-wall dynamics in a shear flow. We find that the RBC distribution in whole blood becomes naturally anisotropic and creates local clusters and cavities. A platelet can enter a cavity and use it as an express lane for a fast margination toward the wall. Once near the wall, the 3D nature of the platelet-RBC interaction results in a significant platelet movement in the transverse (vorticity) direction and leads to anisotropic platelet diffusion within the RBC-depleted zone or cell-free layer (CFL). We find that the anisotropy in platelet motion further leads to the formation of platelet clusters, even in the absence of any platelet-platelet adhesion. The transverse motion, and the size and number of the platelet clusters are observed to increase with decreasing CFL thickness. The 3D nature of the platelet-RBC collision also induces fluctuations in off-shear plane orientation and, hence, a rotational diffusion of the platelets. Although most marginated platelets are observed to tumble just outside the RBC-rich zone, platelets further inside the CFL are observed to flow with an intermittent dynamics that alters between sliding and tumbling, as a result of the off-shear plane rotational diffusion, bringing them even closer to the wall. To our knowledge, these new findings are based on the fundamentally 3D nature of the platelet-RBC interaction, and they underscore the importance of using cellular-scale 3D models of whole blood to understand platelet margination and near-wall platelet dynamics.


Journal of The Mechanical Behavior of Biomedical Materials | 2016

Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.

Mostafa Abbasi; Mohammed Barakat; Koohyar Vahidkhah; Ali N. Azadani

Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined.


Scientific Reports | 2016

Flow of Red Blood Cells in Stenosed Microvessels

Koohyar Vahidkhah; Peter Balogh; Prosenjit Bagchi

A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.


Journal of Biomechanics | 2017

Supra-annular Valve-in-Valve implantation reduces blood stasis on the transcatheter aortic valve leaflets

Koohyar Vahidkhah; Ali N. Azadani

Leaflet thrombosis following transcatheter aortic valve replacement (TAVR) and Valve-in-Valve (ViV) procedures has been increasingly recognized. This study aimed to investigate the effect of positioning of the transcatheter aortic valve (TAV) in ViV setting on the flow dynamics aspect of post-ViV thrombosis by quantifying the blood stasis in the intra-annular and supra-annular settings. To that end, two idealized computational models, representing ViV intra-annular and supra-annular positioning of a TAV were developed in a patient-specific geometry. Three-dimensional flow fields were then obtained via fluid-solid interaction modeling to study the difference in blood residence time (BRT) on the TAV leaflets in the two settings. At the end of diastole, a strip of high BRT (⩾1.2s) region was observed on the TAV leaflets in the ViV intra-annular positioning at the fixed boundary where the leaflets are attached to the frame. Such a high BRT region was absent on the TAV leaflets in the supra-annular positioning. The maximum value of BRT on the surface of non-, right, and left coronary leaflets of the TAV in the supra-annular positioning were 53%, 11%, and 27% smaller compared to the intra-annular positioning, respectively. It was concluded that the geometric confinement of TAV by the leaflets of the failed bioprosthetic valve in ViV intra-annular positioning increases the BRT on the leaflets and may act as a permissive factor in valvular thrombosis. The absence of such a geometric confinement in the ViV supra-annular positioning leads to smaller BRT and subsequently less likelihood of leaflet thrombosis.


European Journal of Cardio-Thoracic Surgery | 2017

Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets

Koohyar Vahidkhah; Mohammed Barakat; Mostafa Abbasi; Shahnaz Javani; Peyman N. Azadani; Anwar Tandar; Danny Dvir; Ali N. Azadani

OBJECTIVES Leaflet thrombosis following transcatheter aortic valve replacement (TAVR) and valve-in-valve (ViV) procedures has been increasingly recognized. However, the factors affecting the post-TAVR/ViV thrombosis are not fully understood. This study aimed to investigate the effect of the geometric confinement of transcatheter aortic valve (TAV) on blood residence time (BRT) on the TAV leaflets and in turn on the post-TAVR valve thrombosis. METHODS Two computational models, representing a surgical bioprosthesis and a TAV, were developed to study the effect of the geometric confinement on BRT on the leaflets in ViV setting/TAVR Intra-annular positioning. 3D flow fields were obtained via a one-way fluid-solid interaction modelling approach validated by experimental testing. BRT was compared between the two models by quantification and statistical analysis of the residence time of randomly distributed particles in close proximity of the leaflets. RESULTS Significantly longer BRT on the leaflets was observed in the TAV compared to the surgical valve during different stages of the cardiac cycle. During forward flow, the mean value of BRT was found to be 39% higher in the TAV compared to the surgical bioprosthesis ( P <  0.0001). During diastole, specifically from end-systole to mid-diastole and from mid-diastole to the beginning of systole, the amount by which the mean BRT was higher for TAV compared to the surgical valve was 150% and 40%, respectively ( P <  0.0005). CONCLUSIONS The geometric confinement of TAV by the failed bioprosthesis or the calcified native valve increases the BRT on the TAV leaflets. This may act as a permissive factor in valve thrombosis.


Journal of Biomechanical Engineering-transactions of The Asme | 2013

Hydrodynamic Interaction Between a Platelet and an Erythrocyte: Effect of Erythrocyte Deformability, Dynamics, and Wall Proximity

Koohyar Vahidkhah; Scott L. Diamond; Prosenjit Bagchi

We present three-dimensional numerical simulations of hydrodynamic interaction between a red blood cell (RBC) and a platelet in a wall-bounded shear flow. The dynamics and large deformation of the RBC are fully resolved in the simulations using a front-tracking method. The objective is to quantify the influence of tank treading and tumbling dynamics of the RBC, and the presence of a bounding wall on the deflection of platelet trajectories. We observe two types of interaction: A crossing event in which the platelet comes in close proximity to the RBC, rolls over it, and continues to move in the same direction; and a turning event in which the platelet turns away before coming close to the RBC. The crossing events occur when the initial lateral separation between the cells is above a critical separation, and the turning events occur when it is below the critical separation. The critical lateral separation is found to be higher during the tumbling motion than that during the tank treading. When the RBC is flowing closer to the wall than the platelet, the critical separation increases by several fold, implying the turning events have higher probability to occur than the crossing events. On the contrary, if the platelet is flowing closer to the wall than the RBC, the critical separation decreases by several folds, implying the crossing events are likely to occur. Based on the numerical results, we propose a mechanism of continual platelet drift from the RBC-rich region of the vessel towards the wall by a succession of turning and crossing events. The trajectory deflection in the crossing events is found to depend nonmonotonically on the initial lateral separation, unlike the monotonic trend observed in tracer particle deflection and in deformable sphere-sphere collision. This nonmonotonic trend is shown to be a consequence of the deformation of the RBC caused by the platelet upon collision. An estimation of the platelet diffusion coefficient yields values that are similar to those reported in experiments and computer simulations with multicellular suspension.


The Annals of Thoracic Surgery | 2017

Blood Stasis on Transcatheter Valve Leaflets and Implications for Valve-in-Valve Leaflet Thrombosis

Koohyar Vahidkhah; Shahnaz Javani; Mostafa Abbasi; Peyman N. Azadani; Anwar Tandar; Danny Dvir; Ali N. Azadani

BACKGROUND Leaflet thrombosis after valve-in-valve (ViV) procedure has been increasingly recognized. This study aimed to investigate the flow dynamics aspect of leaflet thrombosis by quantifying the blood stasis on the noncoronary and coronary leaflets of a surgical aortic valve (SAV) and a transcatheter aortic valve (TAV) in a ViV setting. METHODS Two computational models, representing a SAV and a TAV in ViV setting, were developed in a patient-specific geometry. Three-dimensional flow fields were obtained through a fluid-solid interaction modeling approach to study the difference in blood residence time (BRT) on the coronary and noncoronary leaflets. RESULTS Longer BRT was observed on the TAV leaflets compared with the SAV, specifically near the leaflet fixed boundary. Particularly, at the end of diastole, the areas of high BRT (≥1.2 seconds) on the surface of the TAV model leaflets were four times larger than those of the SAV model. The distribution of BRT on the three leaflets exhibited a similar pattern in the model for the TAV in ViV setting. That was in contrast to the SAV model where large areas of high BRT were observed on the noncoronary leaflet. CONCLUSIONS Geometric confinement of the TAV by the leaflets and the frame of the degenerated bioprosthesis that circumferentially surround the TAV stent increases the BRT on the leaflets, which may act as a permissive factor in the TAV leaflet thrombosis after ViV procedure. A similar distribution pattern of BRT observed on the TAV leaflets may explain the similar rate of occurrence of thrombosis on the three leaflets.


Eurointervention | 2017

Effect of reduced cardiac output on blood stasis on transcatheter aortic valve leaflets: implications for valve thrombosis

Koohyar Vahidkhah; Mostafa Abbasi; Mohammed Barakat; Peyman N. Azadani; Anwar Tandar; Danny Dvir; Ali N. Azadani

AIMS There is an increasing awareness of leaflet thrombosis following transcatheter aortic valve implantation (TAVI) and valve-in-valve (ViV) procedures. Nevertheless, the predisposing factors affecting transcatheter aortic valve (TAV) thrombosis have remained unclear. This study aimed to quantify the effects of reduced cardiac output (CO) on blood stasis on the TAV leaflets as a permissive factor for valve thrombosis. METHODS AND RESULTS An idealised computational model representing a TAV was developed in a patient-specific geometry. Three-dimensional flow fields were obtained via a fluid-solid interaction modelling approach at different COs: 5.0, 3.5, 2.0 L/min. Blood residence time (BRT) was subsequently calculated on the leaflets. An association between reduced CO and increased blood stasis on the TAV leaflets was observed. At the end of diastole, larger areas of high BRT (>1.2 s) were observed at the leaflets fixed edge at low COs. Such areas were calculated to be 2, 8, and 11% of the total surface area of leaflets at CO=5.0, 3.5, and 2.0 L/min, respectively, indicating a ~sixfold increase of BRT on the leaflets from the highest to the lowest CO. CONCLUSIONS This study indicates an association between reduced CO and increased blood stasis on the TAV leaflets which can be regarded as a precursor of valve thrombosis.


Journal of the American College of Cardiology | 2017

VALVE THROMBOSIS FOLLOWING TRANSCATHETER AORTIC VALVE REPLACEMENT: IMPLICATIONS OF REDUCED CARDIAC OUTPUT

Koohyar Vahidkhah; Mostafa Abbasi; Shahnaz Javani; Peyman N. Azadani; Anwar Tandar; Ali N. Azadani

Background: Leaflet thrombosis following transcatheter aortic valve replacement (TAVR) has been increasingly recognized. Recent studies have suggested that reduced cardiac output (CO) may be associated with increased risk of thrombosis. The present study aims to quantify the effects of cardiac


Soft Matter | 2015

Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension.

Koohyar Vahidkhah; Prosenjit Bagchi

Collaboration


Dive into the Koohyar Vahidkhah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danny Dvir

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Ge

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge