Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Korbinian Schneeberger is active.

Publication


Featured researches published by Korbinian Schneeberger.


Science | 2010

The Rate and Molecular Spectrum of Spontaneous Mutations in Arabidopsis thaliana

Stephan Ossowski; Korbinian Schneeberger; José Ignacio Lucas-Lledó; Norman Warthmann; Richard M. Clark; Ruth G. Shaw; Detlef Weigel; Michael Lynch

Evolution in Action Rates of evolution in gene and genome sequences have been estimated, but these estimates are subject to error because many of the steps of evolution over the ages are not directly measurable or are hidden under subsequent changes. Ossowski et al. (p. 92) now provide a more accurate measurement of how often spontaneous mutations arise in a nuclear genome. Mutations arising over 30 generations were compared by sequencing DNA from individual Arabidopsis thaliana plants. UV- and deamination-induced mutagenesis appeared to bias the type of mutations found. Rapid sequencing technologies allow a more accurate calculation of the mutation rate for plants. To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 × 10−9 base substitutions per site per generation, the majority of which are G:C→A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light–induced mutagenesis.


Nature Genetics | 2011

The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

Tina T. Hu; Pedro Pattyn; Erica G. Bakker; Jun Cao; Jan Fang Cheng; Richard M. Clark; Noah Fahlgren; Jeffrey A. Fawcett; Jane Grimwood; Heidrun Gundlach; Georg Haberer; Jesse D. Hollister; Stephan Ossowski; Robert P. Ottilar; Asaf Salamov; Korbinian Schneeberger; Manuel Spannagl; Xi Wang; Liang Yang; Mikhail E. Nasrallah; Joy Bergelson; James C. Carrington; Brandon S. Gaut; Jeremy Schmutz; Klaus F. X. Mayer; Yves Van de Peer; Igor V. Grigoriev; Magnus Nordborg; Detlef Weigel; Ya-Long Guo

We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3× dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis.


Genome Research | 2008

Sequencing of natural strains of Arabidopsis thaliana with short reads

Stephan Ossowski; Korbinian Schneeberger; Richard M. Clark; Christa Lanz; Norman Warthmann; Detlef Weigel

Whole-genome hybridization studies have suggested that the nuclear genomes of accessions (natural strains) of Arabidopsis thaliana can differ by several percent of their sequence. To examine this variation, and as a first step in the 1001 Genomes Project for this species, we produced 15- to 25-fold coverage in Illumina sequencing-by-synthesis (SBS) reads for the reference accession, Col-0, and two divergent strains, Bur-0 and Tsu-1. We aligned reads to the reference genome sequence to assess data quality metrics and to detect polymorphisms. Alignments revealed 823,325 unique single nucleotide polymorphisms (SNPs) and 79,961 unique 1- to 3-bp indels in the divergent accessions at a specificity of >99%, and over 2000 potential errors in the reference genome sequence. We also identified >3.4 Mb of the Bur-0 and Tsu-1 genomes as being either extremely dissimilar, deleted, or duplicated relative to the reference genome. To obtain sequences for these regions, we incorporated the Velvet assembler into a targeted de novo assembly method. This approach yielded 10,921 high-confidence contigs that were anchored to flanking sequences and harbored indels as large as 641 bp. Our methods are broadly applicable for polymorphism discovery in moderate to large genomes even at highly diverged loci, and we established by subsampling the Illumina SBS coverage depth required to inform a broad range of functional and evolutionary studies. Our pipeline for aligning reads and predicting SNPs and indels, SHORE, is available for download at http://1001genomes.org.


Nature Methods | 2009

SHOREmap: simultaneous mapping and mutation identification by deep sequencing

Korbinian Schneeberger; Stephan Ossowski; Christa Lanz; Trine Juul; Annabeth Høgh Petersen; Kåre Lehmann Nielsen; Jan-Elo Jørgensen; Detlef Weigel; Stig Uggerhø Andersen

Supplementary Figure 1 Method workflow Supplementary Figure 2 Visual output from SHOREmap DENOVO Supplementary Table 1 Top 10 ranked mutations from the SHOREmap ANNOTATE output Supplementary Table 2 Command line programs, parameters and run time used for the computational analysis of Illumina data Supplementary Table 3 Identification of additional AT4G35090 mutant alleles Supplementary Table 4 Output of SHOREmap ANNOTATE using the interval based on SHOREmap DENOVO data Supplementary Note Mapping large deletions, QTLs and dominant or recessive lethal mutations. Supplementary Methods Lab protocols and computational algorithms Supplementary Data SHORE and SHOREmap example files


Nature | 2009

Selective epigenetic control of retrotransposition in Arabidopsis

Marie Mirouze; Jon Reinders; Etienne Bucher; Taisuke Nishimura; Korbinian Schneeberger; Stephan Ossowski; Jun Cao; Detlef Weigel; Jerzy Paszkowski; Olivier Mathieu

Retrotransposons are mobile genetic elements that populate chromosomes, where the host largely controls their activities. In plants and mammals, retrotransposons are transcriptionally silenced by DNA methylation, which in Arabidopsis is propagated at CG dinucleotides by METHYLTRANSFERASE 1 (MET1). In met1 mutants, however, mobilization of retrotransposons is not observed, despite their transcriptional activation. A post-transcriptional mechanism therefore seems to be preventing retrotransposition. Here we show that a copia-type retrotransposon (Évadé, French for ‘fugitive’) evaded suppression of its movement during inbreeding of hybrid epigenomes consisting of met1- and wild-type-derived chromosomes. Évadé (EVD) reinsertions caused a series of developmental mutations that allowed its identification. Genetic testing of host control of the EVD life cycle showed that transcriptional suppression occurred by CG methylation supported by RNA-directed DNA methylation. On transcriptional reactivation, subsequent steps of the EVD cycle were inhibited by plant-specific RNA polymerase IV/V and the histone methyltransferase KRYPTONITE (KYP). Moreover, genome resequencing demonstrated retrotransposition of EVD but no other potentially active retroelements when this combination of epigenetic mechanisms was compromised. Our results demonstrate that epigenetic control of retrotransposons extends beyond transcriptional suppression and can be individualized for particular elements.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato

Daniel Koenig; José M. Jiménez-Gómez; Seisuke Kimura; Daniel Fulop; Daniel H. Chitwood; Lauren R. Headland; Ravi Kumar; Michael F. Covington; Upendra Kumar Devisetty; An V. Tat; Takayuki Tohge; Anthony Bolger; Korbinian Schneeberger; Stephan Ossowski; Christa Lanz; Guangyan Xiong; Mallorie Taylor-Teeples; Siobhan M. Brady; Markus Pauly; Detlef Weigel; Alisdair R. Fernie; Jie Peng; Neelima Sinha; Julin N. Maloof

Significance One of the most important technological advances by humans is the domestication of plant species for the production of food. We have used high-throughput sequencing to identify changes in DNA sequence and gene expression that differentiate cultivated tomato and its wild relatives. We also identify hundreds of candidate genes that have evolved new protein sequences or have changed expression levels in response to natural selection in wild tomato relatives. Taken together, our analyses provide a snapshot of genome evolution under artificial and natural conditions. Although applied over extremely short timescales, artificial selection has dramatically altered the form, physiology, and life history of cultivated plants. We have used RNAseq to define both gene sequence and expression divergence between cultivated tomato and five related wild species. Based on sequence differences, we detect footprints of positive selection in over 50 genes. We also document thousands of shifts in gene-expression level, many of which resulted from changes in selection pressure. These rapidly evolving genes are commonly associated with environmental response and stress tolerance. The importance of environmental inputs during evolution of gene expression is further highlighted by large-scale alteration of the light response coexpression network between wild and cultivated accessions. Human manipulation of the genome has heavily impacted the tomato transcriptome through directed admixture and by indirectly favoring nonsynonymous over synonymous substitutions. Taken together, our results shed light on the pervasive effects artificial and natural selection have had on the transcriptomes of tomato and its wild relatives.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Reference-guided assembly of four diverse Arabidopsis thaliana genomes

Korbinian Schneeberger; Stephan Ossowski; Felix Ott; Juliane D. Klein; Xi Wang; Christa Lanz; Lisa M. Smith; Jun Cao; Joffrey Fitz; Norman Warthmann; Stefan R. Henz; Daniel H. Huson; Detlef Weigel

We present whole-genome assemblies of four divergent Arabidopsis thaliana strains that complement the 125-Mb reference genome sequence released a decade ago. Using a newly developed reference-guided approach, we assembled large contigs from 9 to 42 Gb of Illumina short-read data from the Landsberg erecta (Ler-1), C24, Bur-0, and Kro-0 strains, which have been sequenced as part of the 1,001 Genomes Project for this species. Using alignments against the reference sequence, we first reduced the complexity of the de novo assembly and later integrated reads without similarity to the reference sequence. As an example, half of the noncentromeric C24 genome was covered by scaffolds that are longer than 260 kb, with a maximum of 2.2 Mb. Moreover, over 96% of the reference genome was covered by the reference-guided assembly, compared with only 87% with a complete de novo assembly. Comparisons with 2 Mb of dideoxy sequence reveal that the per-base error rate of the reference-guided assemblies was below 1 in 10,000. Our assemblies provide a detailed, genomewide picture of large-scale differences between A. thaliana individuals, most of which are difficult to access with alignment-consensus methods only. We demonstrate their practical relevance in studying the expression differences of polymorphic genes and show how the analysis of sRNA sequencing data can lead to erroneous conclusions if aligned against the reference genome alone. Genome assemblies, raw reads, and further information are accessible through http://1001genomes.org/projects/assemblies.html.


Genome Biology | 2009

Simultaneous alignment of short reads against multiple genomes.

Korbinian Schneeberger; Jörg Hagmann; Stephan Ossowski; Norman Warthmann; Sandra Gesing; Oliver Kohlbacher; Detlef Weigel

Genome resequencing with short reads generally relies on alignments against a single reference. GenomeMapper supports simultaneous mapping of short reads against multiple genomes by integrating related genomes (e.g., individuals of the same species) into a single graph structure. It constitutes the first approach for handling multiple references and introduces representations for alignments against complex structures. Demonstrated benefits include access to polymorphisms that cannot be identified by alignments against the reference alone. Download GenomeMapper at http://1001genomes.org.


Trends in Plant Science | 2011

Fast-forward genetics enabled by new sequencing technologies

Korbinian Schneeberger; Detlef Weigel

New sequencing technologies are dramatically accelerating progress in forward genetics, and the use of such methods for the rapid identification of mutant alleles will be soon routine in many laboratories. A straightforward extension will be the cloning of major-effect genetic variants in crop species. In the near future, it can be expected that mapping by sequencing will become a centerpiece in efforts to discover the genes responsible for quantitative trait loci. The largest impact, however, might come from the use of these strategies to extract genes from non-model, non-crop plants that exhibit heritable variation in important traits. Deployment of such genes to improve crops or engineer microbes that produce valuable compounds heralds a potential paradigm shift for plant biology.


Nature Genetics | 2014

The genome of the stress-tolerant wild tomato species Solanum pennellii

Anthony Bolger; Federico Scossa; Marie E. Bolger; Christa Lanz; Florian Maumus; Takayuki Tohge; Hadi Quesneville; Saleh Alseekh; Iben Sørensen; Gabriel Lichtenstein; Eric A. Fich; Mariana Conte; Heike Keller; Korbinian Schneeberger; Rainer Schwacke; Itai Ofner; Julia Vrebalov; Yimin Xu; Sonia Osorio; Saulo Alves Aflitos; Elio Schijlen; José M. Jiménez-Gómez; Malgorzata Ryngajllo; Seisuke Kimura; Ravi Kumar; Daniel Koenig; Lauren R. Headland; Julin N. Maloof; Neelima Sinha; Roeland C. H. J. van Ham

Solanum pennellii is a wild tomato species endemic to Andean regions in South America, where it has evolved to thrive in arid habitats. Because of its extreme stress tolerance and unusual morphology, it is an important donor of germplasm for the cultivated tomato Solanum lycopersicum. Introgression lines (ILs) in which large genomic regions of S. lycopersicum are replaced with the corresponding segments from S. pennellii can show remarkably superior agronomic performance. Here we describe a high-quality genome assembly of the parents of the IL population. By anchoring the S. pennellii genome to the genetic map, we define candidate genes for stress tolerance and provide evidence that transposable elements had a role in the evolution of these traits. Our work paves a path toward further tomato improvement and for deciphering the mechanisms underlying the myriad other agronomic traits that can be improved with S. pennellii germplasm.

Collaboration


Dive into the Korbinian Schneeberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge