Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Korkut Uygun is active.

Publication


Featured researches published by Korkut Uygun.


Nature Medicine | 2010

Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix

Basak E. Uygun; Alejandro Soto-Gutierrez; Hiroshi Yagi; Maria Louisa Izamis; Maria Angela Guzzardi; Carley Shulman; Jack M. Milwid; Naoya Kobayashi; Arno W. Tilles; Francois Berthiaume; Martin Hertl; Yaakov Nahmias; Martin L. Yarmush; Korkut Uygun

Orthotopic liver transplantation is the only available treatment for severe liver failure, but it is currently limited by organ shortage. One technical challenge that has thus far limited the development of a tissue-engineered liver graft is oxygen and nutrient transport. Here we demonstrate a novel approach to generate transplantable liver grafts using decellularized liver matrix. The decellularization process preserves the structural and functional characteristics of the native microvascular network, allowing efficient recellularization of the liver matrix with adult hepatocytes and subsequent perfusion for in vitro culture. The recellularized graft supports liver-specific function including albumin secretion, urea synthesis and cytochrome P450 expression at comparable levels to normal liver in vitro. The recellularized liver grafts can be transplanted into rats, supporting hepatocyte survival and function with minimal ischemic damage. These results provide a proof of principle for the generation of a transplantable liver graft as a potential treatment for liver disease.


Annual Review of Biomedical Engineering | 2011

Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds

Stephen F. Badylak; Doris A. Taylor; Korkut Uygun

The definitive treatment for end-stage organ failure is orthotopic transplantation. However, the demand for transplantation far exceeds the number of available donor organs. A promising tissue-engineering/regenerative-medicine approach for functional organ replacement has emerged in recent years. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. However, significant challenges for three-dimensional organ engineering approach remain. This manuscript describes the fundamental concepts of whole-organ engineering, including characterization of the extracellular matrix as a scaffold, methods for decellularization of vascular organs, potential cells to reseed such a scaffold, techniques for the recellularization process and important aspects regarding bioreactor design to support this approach. Critical challenges and future directions are also discussed.


American Journal of Transplantation | 2014

Subnormothermic Machine Perfusion for Ex Vivo Preservation and Recovery of the Human Liver for Transplantation

Bote G. Bruinsma; Heidi Yeh; Sinan Ozer; Paulo N. Martins; A. Farmer; W. Wu; Nima Saeidi; S. op den Dries; Tim Berendsen; R. N. Smith; James F. Markmann; Robert J. Porte; Martin L. Yarmush; Korkut Uygun; Maria-Louisa Izamis

To reduce widespread shortages, attempts are made to use more marginal livers for transplantation. Many of these grafts are discarded for fear of inferior survival rates or biliary complications. Recent advances in organ preservation have shown that ex vivo subnormothermic machine perfusion has the potential to improve preservation and recover marginal livers pretransplantation. To determine the feasibility in human livers, we assessed the effect of 3 h of oxygenated subnormothermic machine perfusion (21°C) on seven livers discarded for transplantation. Biochemical and microscopic assessment revealed minimal injury sustained during perfusion. Improved oxygen uptake (1.30 [1.11–1.94] to 6.74 [4.15–8.16] mL O2/min kg liver), lactate levels (4.04 [3.70–5.99] to 2.29 [1.20–3.43] mmol/L) and adenosine triphosphate content (45.0 [70.6–87.5] pmol/mg preperfusion to 167.5 [151.5–237.2] pmol/mg after perfusion) were observed. Liver function, reflected by urea, albumin and bile production, was seen during perfusion. Bile production increased and the composition of bile (bile salts/phospholipid ratio, pH and bicarbonate concentration) became more favorable. In conclusion, ex vivo subnormothermic machine perfusion effectively maintains liver function with minimal injury and sustains or improves various hepatobiliary parameters postischemia.


Journal of Surgical Research | 2012

Subnormothermic Machine Perfusion at Both 20°C and 30°C Recovers Ischemic Rat Livers for Successful Transplantation

Herman Tolboom; Maria-Louisa Izamis; Nripen Sharma; Jack M. Milwid; Basak E. Uygun; Francois Berthiaume; Korkut Uygun; Martin L. Yarmush

BACKGROUND Utilizing livers from donors after cardiac death could significantly expand the donor pool. We have previously shown that normothermic (37°C) extracorporeal liver perfusion significantly improves transplantation outcomes of ischemic rat livers. Here we investigate whether recovery of ischemic livers is possible using sub-normothermic machine perfusion at 20°C and 30°C. METHODS Livers from male Lewis rats were divided into five groups after 1 h of warm ischemia (WI): (1) WI only, (2) 5 h of static cold storage (SCS), or 5 h of MP at (3) 20°C, (4) 30°C, and (5) 37°C. Long-term graft performance was evaluated for 28 d post-transplantation. Acute graft performance was evaluated during a 2 h normothermic sanguineous reperfusion ex vivo. Fresh livers with 5 h of SCS were positive transplant controls while fresh livers were positive reperfusion controls. RESULTS Following machine perfusion (MP) (Groups 3, 4, and 5), ischemically damaged livers could be orthotopically transplanted into syngeneic recipients with 100% survival (N ≥ 4) after 4 wk. On the other hand, animals from WI only, or WI + SCS groups all died within 24 h of transplantation. Fresh livers preserved using SCS had the highest alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the lowest bile production during reperfusion, while at 28 d post-transplantation, livers preserved at 20°C and 30°C had the highest total bilirubin values. CONCLUSIONS MP at both 20°C and 30°C eliminated temperature control in perfusion systems and recovered ischemically damaged rat livers. Postoperatively, low transaminases suggest a beneficial effect of sub-normothermic perfusion, while rising total bilirubin levels suggest inadequate prevention of ischemia- or hypothermia-induced biliary damage.


Journal of Hepatology | 2014

Injury to peribiliary glands and vascular plexus before liver transplantation predicts formation of non-anastomotic biliary strictures.

Sanna op den Dries; Andrie C. Westerkamp; Negin Karimian; Annette S. H. Gouw; Bote G. Bruinsma; James F. Markmann; Ton Lisman; Heidi Yeh; Korkut Uygun; Paulo N. Martins; Robert J. Porte

BACKGROUND & AIMS The peribiliary glands of large bile ducts have been identified as a niche of progenitor cells that contribute to regeneration of biliary epithelium after injury. We aimed to determine whether injury to the peribiliary glands of donor livers is a risk factor for development of non-anastomotic biliary strictures (NAS) after liver transplantation. METHODS In 128 liver transplant procedures, biopsies were taken from the donor bile duct and injury was assessed using an established histological grading system. Histological severity of injury was subsequently compared in liver grafts that later developed biliary structures vs. uncomplicated liver grafts. RESULTS Luminal biliary epithelial loss >50% was observed in 91.8% of the grafts before transplantation, yet NAS occurred in only 16.4%. Periluminal peribiliary glands were more severely injured than deep peribiliary glands located near the fibromuscular layer (>50% loss in 56.9% vs. 17.5%, respectively; p<0.001). Injury of deep peribiliary glands was more prevalent and more severe in livers that later developed NAS, compared to grafts without NAS (>50% loss in 50.0% vs. 9.8%, respectively; p=0.004). In parallel, injury of the peribiliary vascular plexus was more severe in livers that developed NAS, compared to grafts without NAS (>50% vascular changes in 57.1% vs. 20.3%; p=0.006). CONCLUSION Injury of peribiliary glands and vascular plexus before transplantation is strongly associated with the occurrence of biliary strictures after transplantation. This suggests that insufficient regeneration due to loss of peribiliary glands or impaired blood supply may explain the development of biliary strictures.


Transplantation | 2009

Recovery of Warm Ischemic Rat Liver Grafts by Normothermic Extracorporeal Perfusion

Herman Tolboom; Roos Pouw; Maria-Louisa Izamis; Jack M. Milwid; Nripen Sharma; Alejandro Soto-Gutierrez; Yaakov Nahmias; Korkut Uygun; Francois Berthiaume; Martin L. Yarmush

Liver transplantation is currently the only established treatment of end-stage liver disease, but it is limited by a severe shortage of viable donor livers. Donors after cardiac death (DCD) are an untapped source that could significantly increase the pool of available livers. Preservation of these DCD livers by conventional static cold storage (SCS) is associated with an unacceptable risk of primary nonfunction and delayed graft failure. Normothermic extracorporeal liver perfusion (NELP) has been suggested as an improvement over SCS. Livers recovered from male Lewis rats were subjected to 1 hr of warm ischemia and preserved with 5 hr of SCS or NELP, and transplanted into syngeneic recipients. As additional controls, non-ischemic livers preserved with 6 hr of SCS or NELP and unpreserved ischemic livers were transplanted. After NELP, ischemically damaged livers could be orthotopically transplanted into syngeneic recipients with 92% survival (n=13) after 4 weeks, which was comparable with control animals that received healthy livers preserved by SCS (n=9) or NELP (n=11) for 6 hr. On the other hand, animals from ischemia/SCS control group all died within 12 hr postoperatively (n=6). Similarly, animals that received ischemic livers without preservation all died within 24 hr after transplantation (n=6). These results suggest that NELP has the potential to reclaim warm ischemic livers that would not be transplantable otherwise. The rat model in this study is a useful platform to further optimize NELP as a method of recovery and preservation of DCD livers.


Cell Transplantation | 2010

Cell Delivery: From Cell Transplantation to Organ Engineering:

Alejandro Soto-Gutierrez; Hiroshi Yagi; Basak E. Uygun; Nalu Navarro-Alvarez; Korkut Uygun; Naoya Kobayashi; Yong Guang Yang; Martin L. Yarmush

Cell populations derived from adult tissue and stem cells possess a great expectation for the treatment of several diseases. Great efforts have been made to generate cells with therapeutic impact from stem cells. However, it is clear that the development of systems to deliver such cells to induce efficient engraftment, growth, and function is a real necessity. Biologic and artificial scaffolds have received significant attention for their potential therapeutic application when use to form tissues in vitro and facilitate engraftment in vivo. Ultimately more sophisticated methods for decellularization of organs have been successfully used in tissue engineering and regenerative medicine applications. These decellularized tissues and organs appear to provide bioactive molecules and bioinductive properties to induce homing, differentiation, and proliferation of cells. The combination of decellularized organs and stem cells may dramatically improve the survival, engraftment, and fate control of transplanted stem cells and their ultimate clinical utility, opening the doors to a new era of organ engineering.


Transplantation research | 2012

A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation.

Tim Berendsen; Bote G. Bruinsma; Jungwoo Lee; Vincent D’Andrea; Qiang Liu; Maria-Louisa Izamis; Korkut Uygun; Martin L. Yarmush

BackgroundLiver donor shortages stimulate the development of strategies that incorporate damaged organs into the donor pool. Herein we present a simplified machine perfusion system without the need for oxygen carriers or temperature control, which we validated in a model of orthotopic liver transplantation.MethodsRat livers were procured and subnormothermically perfused with supplemented Williams E medium for 3 hours, then transplanted into healthy recipients (Fresh-SNMP group). Outcome was compared with static cold stored organs (UW-Control group). In addition, a rat liver model of donation after cardiac death was adapted using a 60-minute warm ischemic period, after which the grafts were either transplanted directly (WI group) or subnormothermically perfused and transplanted (WI-SNMP group).ResultsOne-month survival was 100% in the Fresh-SNMP and UW-Control groups, 83.3% in the WI-SNMP group and 0% in the WI group. Clinical parameters, postoperative blood work and histology did not differ significantly between survivors.ConclusionThis work demonstrates for the first time in an orthotopic transplantation model that ischemically damaged livers can be regenerated effectively using practical subnormothermic machine perfusion without oxygen carriers.


Nature Reviews Gastroenterology & Hepatology | 2012

Application of whole-organ tissue engineering in hepatology

Basak E. Uygun; Martin L. Yarmush; Korkut Uygun

Initially hailed as the ultimate solution to organ failure, engineering of vascularized tissues such as the liver has stalled because of the need for a well-structured circulatory system that can maintain the cells seeded inside the construct. A new approach has evolved to overcome this obstacle. Whole-organ decellularization is a method that retains most of the native vascular structures of the organ, providing microcirculatory support and structure, which can be anastomosed with the recipient circulation. The technique was first applied to the heart and then adapted for the liver. Several studies have shown that cells can be eliminated, the extracellular matrix and vasculature are reasonably preserved and, after repopulation with hepatocytes, these grafts can perform hepatic functions in vitro and in vivo. Progress is rapidly being made as researchers are addressing several key challenges to whole-organ tissue engineering, such as ensuring correct cell distribution, nonparenchymal cell seeding, blood compatibility, immunological concerns, and the source of cells and matrices.


Nature Medicine | 2014

Supercooling enables long-term transplantation survival following 4 days of liver preservation

Tim Berendsen; Bote G. Bruinsma; Catheleyne F. Puts; Nima Saeidi; O. Berk Usta; Basak E. Uygun; Maria-Louisa Izamis; Mehmet Toner; Martin L. Yarmush; Korkut Uygun

The realization of long-term human organ preservation will have groundbreaking effects on the current practice of transplantation. Herein we present a new technique based on subzero nonfreezing preservation and extracorporeal machine perfusion that allows transplantation of rat livers preserved for up to four days, thereby tripling the viable preservation duration.The realization of long–term human organ preservation will have groundbreaking effects on the current practice of transplantation. Herein we present a novel technique based on sub–zero non–freezing tissue preservation and extracorporeal machine perfusion that allows transplantation of rat livers preserved for up to 4 days, thereby tripling the viable preservation duration.

Collaboration


Dive into the Korkut Uygun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Basak E. Uygun

Shriners Hospitals for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Porte

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paulo N. Martins

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge