Kory Green
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kory Green.
Nanotechnology | 2015
Ling Li; Kory Green; Hans Hallen; Shuang Fang Lim
Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF4: Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core.
Nanotechnology | 2016
Kory Green; Janina Wirth; Shuang Fang Lim
We enhance the efficiency of upconverting nanoparticles by investigating the plasmonic coupling of 25 nm diameter NaYF4:Yb, Er nanoparticles with a gold-shell coating, and study the physical mechanism of enhancement by single-particle, time-resolved spectroscopy. A three-fold overall increase in emission intensity, and five-fold increase of green emission for these plasmonically enhanced particles have been achieved. Using a combination of structural and fluorescent imaging, we demonstrate that fluorescence enhancement is based on the photonic properties of single, isolated particles. Time-resolved spectroscopy shows that the increase in fluorescence is coincident with decreased rise time, which we attribute to an enhanced absorption of infrared light and energy transfer from Yb(3+) to Er(3+) atoms. Time-resolved spectroscopy also shows that fluorescence life-times are decreased to different extents for red and green emission. This indicates that the rate of photon emission is not suppressed, as would be expected for a metallic cavity, but rather enhanced because the metal shell acts as an optical antenna, with differing efficiency at different wavelengths.
Small | 2017
Janina Wirth; Kory Green; Megan O'Connor; Shuang Fang Lim
Upconverting nanoparticles show potential applications in the field of photovoltaics and array-based detection devices. While fluorescence enhancement using interference of incident radiation is well known in Stokes-shift type systems such as fluorescent dyes; the effect of such interference geometry in nonlinear Anti-Stokes type emission, such as in upconversion rare earth photophysics is demonstrated for the first time. This work describes in detail the influence of the interference modulation on both the excitation (interion energy transfer) and radiative decay with nonradiative decay processes active between emissive levels. These effects are illustrated in the thickness dependence of the decay rate and rise time. Single particle upconverted spectra and time-resolved measurements show concurrent optimization of the infrared absorption and emission at 540 and 650 nm, with an average enhanced emission of 20 times at λ = 540 and 45 times at λ = 650 nm, dependent on the interference layer thickness and on the excitation intensity. The experimental results are correlated with finite element modeling. Both experiments and calculations show emission enhancement at an interference layer thickness of about 740 ± 20 nm, where such tolerance and the planar design, leads to ease in implementation in applications.
Scientific Reports | 2017
Kory Green; Janina Wirth; Shuang Fang Lim
We showed that the anisotropic disk shape of nanoplasmonic upconverting nanoparticles (NP-UCNPs) creates changes in fluorescence intensity during rotational motion. We determined the orientation by a three-fold change in fluorescence intensity. We further found that the luminescence intensity was strongly dependent on the particle orientation and on polarization of the excitation light. The luminescence intensity showed a three-fold difference between flat and on-edge orientations. The intensity also varied sinusoidally with the polarization of the incident light, with an Imax/Imin ratio of up to 2.02. Both the orientation dependence and Imax/Imin are dependent on the presence of a gold shell on the UCNP. Because the fluorescence depends on the NP’s orientation, the rotational motion of biomolecules coupled to the NP can be detected. Finally, we tracked the real-time rotational motion of a single NP-UCNP in solution between slide and coverslip with diffusivity up to 10−2 μm2s−1.
Frontiers in chemistry | 2018
Kory Green; Kai Huang; Hai Pan; Gang Han; Shuang Fang Lim
Upconversion Nanoparticles (UCNPs) enable direct measurement of the local temperature with high temporal and thermal resolution and sensitivity. Current studies focusing on small animals and cellular systems, based on continuous wave (CW) infrared excitation sources, typically lead to localized thermal heating. However, the effects of upconversion bioimaging at the molecular scale, where higher infrared intensities under a tightly focused excitation beam, coupled with pulsed excitation to provide higher peak powers, is not well understood. We report on the feasibility of 800 and 980 nm excited UCNPs in thermal sensing under pulsed excitation. The UCNPs report temperature ratiometrically with sensitivities in the 1 × 10−4 K−1 range under both excitation wavelengths. Our optical measurements show a ln(I525/I545) vs. 1/T dependence for both 800 nm and 980 nm excitations. Despite widespread evidence promoting the benefits of 800 nm over 980 nm CW excitation in avoiding thermal heating in biological imaging, in contrary, we find that given the pulsed laser intensities appropriate for single particle imaging, at both 800 and 980 nm, that there is no significant local heating in air and in water. Finally, in order to confirm the applicability of infrared imaging at excitation intensities compatible with single nanoparticle tracking, DNA tightropes were exposed to pulsed infrared excitations at 800 and 980 nm. Our results show no appreciable change in the viability of DNA over time when exposed to either wavelengths. Our studies provide evidence for the feasibility of exploring protein-DNA interactions at the single molecule scale, using UCNPs as a reporter.
Proceedings of SPIE | 2016
Shuang Fang Lim; Janina Wirth; Kory Green; Megan O'Connor
Infrared excited and visible emitting upconverting nanoparticles show potential applications in the fields of photovoltaics, and in single molecule bio-imaging. We show enhanced upconversion luminescence, of up to 50-fold, at the single particle level, via subwavelength interference of the infrared excitation and visible emission. Single particle upconverted spectra and time-resolved decay, correlated with AFM, show enhanced emission at 545nm and 650 nm, whereby the magnitude of the enhancement is dependent on the thickness of the interference layer, and on the excitation intensity. We correlate our experimental results with finite element modeling showing both enhanced excitation and emission as a function of the interference layer thickness.
Proceedings of SPIE | 2015
Kory Green; Janina Wirth; Megan O'Connor; Shuang Fang Lim
Photothermal treatment is a valuable part of cancer therapies, in which the temperature of the heated region must rise to at least 40-45°C for protein destruction to occur[1, 2]. In practice, heating temperature distributions are typically non-uniform, resulting in incomplete kill of cancer cells. Gold nanorods (AuNRs) show strong absorption in the near infrared which leads to a strong plasmonic photothermal (PPT) effect. However, basic scientific understanding of AuNR local temperature and heat transfer to local surroundings has not been investigated in detail. In our study, the near infrared (NIR) excited Upconversion nanoparticle (UCNP)-AuNR nanostructure combines the powerful diagnostic and thermal sensing capacity of UCNPs, with the known therapeutic property of AuNRs. We show enhanced upconverted emission with AuNRs coupling, improving diagnostic capacity of the construct. We demonstrate mapping of the temperature profile within tumor tissue phantom medium, at high spatial and temporal sensitivity.
Bulletin of the American Physical Society | 2018
Ying Zhou; I-te Chen; Kory Green; Chih-Hao Chang; Shuang Fang Lim
Bulletin of the American Physical Society | 2018
Kory Green; Ying Zhou; Shuang Fang Lim
Bulletin of the American Physical Society | 2015
Kory Green; Megan O'Connor; Parminder Kaur; Hong Wang; Shuang Fang Lim