Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kosei Takeuchi is active.

Publication


Featured researches published by Kosei Takeuchi.


FEBS Letters | 2011

Predicted expansion of the claudin multigene family

Katsuhiko Mineta; Yasuko Yamamoto; Yuji Yamazaki; Hiroo Tanaka; Yukiyo Tada; Kuniaki Saito; Atsushi Tamura; Michihiro Igarashi; Toshinori Endo; Kosei Takeuchi; Sachiko Tsukita

ZO‐1 and Claudin‐26 colocalize by fluorescence microscopy (View interaction)


Neuron | 2006

SAD: A Presynaptic Kinase Associated with Synaptic Vesicles and the Active Zone Cytomatrix that Regulates Neurotransmitter Release

Eiji Inoue; Sumiko Mochida; Hiroshi Takagi; Susumu Higa; Maki Deguchi-Tawarada; Etsuko Takao-Rikitsu; Marie Inoue; Ikuko Yao; Kosei Takeuchi; Isao Kitajima; Mitsutoshi Setou; Toshihisa Ohtsuka; Yoshimi Takai

A serine/threonine kinase SAD-1 in C. elegans regulates synapse development. We report here the isolation and characterization of mammalian orthologs of SAD-1, named SAD-A and SAD-B, which are specifically expressed in the brain. SAD-B is associated with synaptic vesicles and, like the active zone proteins CAST and Bassoon, is tightly associated with the presynaptic cytomatrix in nerve terminals. A short conserved region (SCR) in the COOH-terminus is required for the synaptic localization of SAD-B. Overexpression of SAD-B in cultured rat hippocampal neurons significantly increases the frequency of miniature excitatory postsynaptic current but not its amplitude. Introduction of SCR into presynaptic superior cervical ganglion neurons in culture significantly inhibits evoked synaptic transmission. Moreover, SCR decreases the size of the readily releasable pool measured by applying hypertonic sucrose. Furthermore, SAD-B phosphorylates the active zone protein RIM1 but not Munc13-1. These results suggest that mammalian SAD kinase presynaptically regulates neurotransmitter release.


Zoological Science | 2005

Neural Projections in Planarian Brain Revealed by Fluorescent Dye Tracing

Keiji Okamoto; Kosei Takeuchi; Kiyokazu Agata

Abstract The planarian brain has an inverted-U shaped structure with functional regionalization. To investigate how each region in the brain connects to each other, we traced neural projections by microin-jection of fluorescence dye tracers. We found that external light and olfactory/taste signals received in the head region are conveyed in the main lobes (sponge region) of the brain. Chemosensory neurons distributed in the lateral branches project to the peripheral region of the sponge and visual neurons project to the medial region of the sponge. Parts of the sensory neurons project directly to the corresponding sensory neurons on the opposite side of the brain. However, all of the dye labeled brain neurons in the left and right lobes connect to each other via commissural neurons in the central region of the sponge. In addition to these observations, we detected regional differences in the planarian visual neurons. Posterior visual neurons have ipsilateral projection, but anterior visual neurons project to the contralateral side of the brain. A pair of longitudinal ventral nerve cords (VNC) connect to the brain on the ventral side, suggesting that they transmit signals which are integrated and processed in the brain. We also detected the direct connection of neurons in the brain and those of the pharynx, even though most pharynx neurons connect to VNC neurons. Here, we report for the first time on neural connections in the planarian central nervous system after overcoming technical difficulties specific to flatworms.


Neuroscience Research | 2007

Identification and distribution of tryptophan hydroxylase (TPH)-positive neurons in the planarian Dugesia japonica.

Kaneyasu Nishimura; Yoshihisa Kitamura; Takeshi Inoue; Yoshihiko Umesono; Kanji Yoshimoto; Kosei Takeuchi; Takashi Taniguchi; Kiyokazu Agata

We identified a full-length tryptophan hydroxylase (TPH) gene of planarian Dugesia japonica from a head EST database, and named it DjTPH. Based on whole-mount in situ hybridization and immunofluorescence analyses, DjTPH mRNA and protein were mainly expressed in the nervous system, especially ventral nerve cords and eye pigment cells. Furthermore, DjTPH immunoreactivity was clearly detected at commissure axonal connections in the ventral nerve cords. 5-HT was significantly decreased in DjTPH-knockdown planarians compared with control animals. These results suggest that DjTPH is required for 5-HT biosynthesis, and DjTPH antibody is a useful marker for serotonergic neurons in planarians.


Neuron | 2014

Pioneering Axons Regulate Neuronal Polarization in the Developing Cerebral Cortex

Takashi Namba; Yuji Kibe; Yasuhiro Funahashi; Shinichi Nakamuta; Tetsuya Takano; Takuji Ueno; Akiko Shimada; Sachi Kozawa; Mayumi Okamoto; Yasushi Shimoda; Kanako Oda; Yoshino Wada; Tomoyuki Masuda; Akira Sakakibara; Michihiro Igarashi; Takaki Miyata; Catherine Faivre-Sarrailh; Kosei Takeuchi; Kozo Kaibuchi

The polarization of neurons, which mainly includes the differentiation of axons and dendrites, is regulated by cell-autonomous and non-cell-autonomous factors. In the developing central nervous system, neuronal development occurs in a heterogeneous environment that also comprises extracellular matrices, radial glial cells, and neurons. Although many cell-autonomous factors that affect neuronal polarization have been identified, the microenvironmental cues involved in neuronal polarization remain largely unknown. Here, we show that neuronal polarization occurs in a microenvironment in the lower intermediate zone, where the cell adhesion molecule transient axonal glycoprotein-1 (TAG-1) is expressed in cortical efferent axons. The immature neurites of multipolar cells closely contact TAG-1-positive axons and generate axons. Inhibition of TAG-1-mediated cell-to-cell interaction or its downstream kinase Lyn impairs neuronal polarization. These results show that the TAG-1-mediated cell-to-cell interaction between the unpolarized multipolar cells and the pioneering axons regulates the polarization of multipolar cells partly through Lyn kinase and Rac1.


Nature Communications | 2013

Chondroitin sulphate N -acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury

Kosei Takeuchi; Nozomu Yoshioka; Susumu Higa Onaga; Yumi Watanabe; Shinji Miyata; Yoshino Wada; Chika Kudo; Masayasu Okada; Kentaro Ohko; Kanako Oda; Toshiya Sato; Minesuke Yokoyama; Natsuki Matsushita; Masaya Nakamura; Hideyuki Okano; Kenji Sakimura; Hitoshi Kawano; Hiroshi Kitagawa; Michihiro Igarashi

Extracellular factors that inhibit axon growth and intrinsic factors that promote it affect neural regeneration. Therapies targeting any single gene have not yet simultaneously optimized both types of factors. Chondroitin sulphate (CS), a glycosaminoglycan, is the most abundant extracellular inhibitor of axon growth. Here we show that mice carrying a gene knockout for CS N-acetylgalactosaminyltransferase-1 (T1), a key enzyme in CS biosynthesis, recover more completely from spinal cord injury than wild-type mice and even chondroitinase ABC-treated mice. Notably, synthesis of heparan sulphate (HS), a glycosaminoglycan promoting axonal growth, is also upregulated in TI knockout mice because HS-synthesis enzymes are induced in the mutant neurons. Moreover, chondroitinase ABC treatment never induces HS upregulation. Taken together, our results indicate that regulation of a single gene, T1, mediates excellent recovery from spinal cord injury by optimizing counteracting effectors of axon regeneration—an extracellular inhibitor of CS and intrinsic promoters, namely, HS-synthesis enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identification of functional marker proteins in the mammalian growth cone

Motohiro Nozumi; Tetsuya Togano; Kazuko Takahashi-Niki; Jia Lu; Atsuko Honda; Masato Taoka; Takashi Shinkawa; Hisashi Koga; Kosei Takeuchi; Toshiaki Isobe; Michihiro Igarashi

Identification of proteins in the mammalian growth cone has the potential to advance our understanding of this critical regulator of neuronal growth and formation of neural circuit; however, to date, only one growth cone marker protein, GAP-43, has been reported. Here, we successfully used a proteomic approach to identify 945 proteins present in developing rat forebrain growth cones, including highly abundant, membrane-associated and actin-associated proteins. Almost 100 of the proteins appear to be highly enriched in the growth cone, as determined by quantitative immunostaining, and for 17 proteins, the results of RNAi suggest a role in axon growth. Most of the proteins we identified have not previously been implicated in axon growth and thus their identification presents a significant step forward, providing marker proteins and candidate neuronal growth-associated proteins.


Biochemical Journal | 2010

Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development

Yumi Watanabe; Kosei Takeuchi; Susumu Higa Onaga; Michiko Sato; Mika Tsujita; Manabu Abe; Rie Natsume; Minqi Li; Tatsuya Furuichi; Mika Saeki; Tomomi Izumikawa; Ayumi Hasegawa; Minesuke Yokoyama; Shiro Ikegawa; Kenji Sakimura; Norio Amizuka; Hiroshi Kitagawa; Michihiro Igarashi

CS (chondroitin sulfate) is a glycosaminoglycan species that is widely distributed in the extracellular matrix. To understand the physiological roles of enzymes involved in CS synthesis, we produced CSGalNAcT1 (CS N-acetylgalactosaminyltransferase 1)-null mice. CS production was reduced by approximately half in CSGalNAcT1-null mice, and the amount of short-chain CS was also reduced. Moreover, the cartilage of the null mice was significantly smaller than that of wild-type mice. Additionally, type-II collagen fibres in developing cartilage were abnormally aggregated and disarranged in the homozygous mutant mice. These results suggest that CSGalNAcT1 is required for normal CS production in developing cartilage.


Molecular and Cellular Biology | 2016

Claudin-21 Has a Paracellular Channel Role at Tight Junctions

Hiroo Tanaka; Yasuko Yamamoto; Hiroka Kashihara; Yuji Yamazaki; Kazutoshi Tani; Yoshinori Fujiyoshi; Katsuhiko Mineta; Kosei Takeuchi; Atsushi Tamura; Sachiko Tsukita

ABSTRACT Claudin protein family members, of which there are at least 27 in humans and mice, polymerize to form tight junctions (TJs) between epithelial cells, in a tissue- and developmental stage-specific manner. Claudins have a paracellular barrier function. In addition, certain claudins function as paracellular channels for small ions and/or solutes by forming selective pores at the TJs, although the specific claudins involved and their functional mechanisms are still in question. Here we show for the first time that claudin-21, which is more highly expressed in the embryonic than the postnatal stages, acts as a paracellular channel for small cations, such as Na+, similar to the typical channel-type claudins claudin-2 and -15. Claudin-21 also allows the paracellular passage of larger solutes. Our findings suggest that claudin-21-based TJs allow the passage of small and larger solutes by both paracellular channel-based and some additional mechanisms.


European Journal of Neuroscience | 2015

A newly identified mouse hypothalamic area having bidirectional neural connections with the lateral septum: the perifornical area of the anterior hypothalamus rich in chondroitin sulfate proteoglycans

Noriko Horii-Hayashi; Takayo Sasagawa; Takashi Hashimoto; Takeshi Kaneko; Kosei Takeuchi; Mayumi Nishi

While previous studies and brain atlases divide the hypothalamus into many nuclei and areas, uncharacterised regions remain. Here, we report a new region in the mouse anterior hypothalamus (AH), a triangular‐shaped perifornical area of the anterior hypothalamus (PeFAH) between the paraventricular hypothalamic nucleus and fornix, that abundantly expresses chondroitin sulfate proteoglycans (CSPGs). The PeFAH strongly stained with markers for chondroitin sulfate/CSPGs such as Wisteria floribunda agglutinin and antibodies against aggrecan and chondroitin 6 sulfate. Nissl‐stained sections of the PeFAH clearly distinguished it as a region of comparatively low density compared to neighboring regions, the paraventricular nucleus and central division of the anterior hypothalamic area. Immunohistochemical and DNA microarray analyses suggested that PeFAH contains sparsely distributed calretinin‐positive neurons and a compact cluster of enkephalinergic neurons. Neuronal tract tracing revealed that both enkephalin‐ and calretinin‐positive neurons project to the lateral septum (LS), while the PeFAH receives input from calbindin‐positive LS neurons. These results suggest bidirectional connections between the PeFAH and LS. Considering neuronal subtype and projection, part of PeFAH that includes a cluster of enkephalinergic neurons is similar to the rat perifornical nucleus and guinea pig magnocellular dorsal nucleus. Finally, we examined c‐Fos expression after several types of stimuli and found that PeFAH neuronal activity was increased by psychological but not homeostatic stressors. These findings suggest that the PeFAH is a source of enkephalin peptides in the LS and indicate that bidirectional neural connections between these regions may participate in controlling responses to psychological stressors.

Collaboration


Dive into the Kosei Takeuchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Kitagawa

Kobe Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge