Koshi Akahane
University of Yamanashi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koshi Akahane.
The Journal of Pediatrics | 2009
Yoichi Morinishi; Kohsuke Imai; Noriko Nakagawa; Hiroki Sato; Katsuyuki Horiuchi; Yoshitoshi Ohtsuka; Yumi Kaneda; Takashi Taga; Hiroaki Hisakawa; Ryosuke Miyaji; Mikiya Endo; Tsutomu Oh–ishi; Yoshiro Kamachi; Koshi Akahane; Chie Kobayashi; Masahiro Tsuchida; Tomohiro Morio; Yoji Sasahara; Satoru Kumaki; Keiko Ishigaki; Makoto Yoshida; Tomonari Urabe; Norimoto Kobayashi; Yuri Okimoto; Janine Reichenbach; Yoshiko Hashii; Yoichiro Tsuji; Kazuhiro Kogawa; Seiji Yamaguchi; Hirokazu Kanegane
OBJECTIVE To assess the feasibility of T-cell receptor excision circles (TRECs) quantification for neonatal mass screening of severe combined immunodeficiency (SCID). STUDY DESIGN Real-time PCR based quantification of TRECs for 471 healthy control patients and 18 patients with SCID with various genetic abnormalities (IL2RG, JAK3, ADA, LIG4, RAG1) were performed, including patients with maternal T-cell engraftment (n = 4) and leaky T cells (n = 3). RESULTS TRECs were detectable in all normal neonatal Guthrie cards (n = 326) at the levels of 10(4) to 10(5) copies/microg DNA. In contrast, TRECs were extremely low in all neonatal Guthrie cards (n = 15) and peripheral blood (n = 14) from patients with SCID, including those with maternal T-cell engraftment or leaky T cells with hypomorphic RAG1 mutations or LIG4 deficiency. There were no false-positive or negative results in this study. CONCLUSION TRECs quantification can be used as a neonatal mass screening for patients with SCID.
Blood | 2010
Kinuko Hirose; Takeshi Inukai; Jiro Kikuchi; Yusuke Furukawa; Tomokatsu Ikawa; Hiroshi Kawamoto; S. Helen Oram; Berthold Göttgens; Nobutaka Kiyokawa; Yoshitaka Miyagawa; Hajime Okita; Koshi Akahane; Xiaochun Zhang; Itaru Kuroda; Hiroko Honna; Keiko Kagami; Kumiko Goi; Hidemitsu Kurosawa; A. Thomas Look; Hirotaka Matsui; Toshiya Inaba; Kanji Sugita
LMO2, a critical transcription regulator of hematopoiesis, is involved in human T-cell leukemia. The binding site of proline and acidic amino acid-rich protein (PAR) transcription factors in the promoter of the LMO2 gene plays a central role in hematopoietic-specific expression. E2A-HLF fusion derived from t(17;19) in B-precursor acute lymphoblastic leukemia (ALL) has the transactivation domain of E2A and the basic region/leucine zipper domain of HLF, which is a PAR transcription factor, raising the possibility that E2A-HLF aberrantly induces LMO2 expression. We here demonstrate that cell lines and a primary sample of t(17;19)-ALL expressed LMO2 at significantly higher levels than other B-precursor ALLs did. Transfection of E2A-HLF into a non-t(17;19) B-precursor ALL cell line induced LMO2 gene expression that was dependent on the DNA-binding and transactivation activities of E2A-HLF. The PAR site in the LMO2 gene promoter was critical for E2A-HLF-induced LMO2 expression. Gene silencing of LMO2 in a t(17;19)-ALL cell line by short hairpin RNA induced apoptotic cell death. These observations indicated that E2A-HLF promotes cell survival of t(17;19)-ALL cells by aberrantly up-regulating LMO2 expression. LMO2 could be a target for a new therapeutic modality for extremely chemo-resistant t(17;19)-ALL.
Journal of Medicinal Chemistry | 2015
Li Tan; Koshi Akahane; Randall McNally; Kathleen M. S. E. Reyskens; Scott B. Ficarro; Suhu Liu; Grit S. Herter-Sprie; Shohei Koyama; Michael J. Pattison; Katherine Labella; Liv Johannessen; Esra A. Akbay; Kwok-Kin Wong; David A. Frank; Jarrod A. Marto; Thomas Look; J. Simon C. Arthur; Michael J. Eck; Nathanael S. Gray
The Janus kinases (JAKs) and their downstream effectors, signal transducer and activator of transcription proteins (STATs), form a critical immune cell signaling circuit, which is of fundamental importance in innate immunity, inflammation, and hematopoiesis, and dysregulation is frequently observed in immune disease and cancer. The high degree of structural conservation of the JAK ATP binding pockets has posed a considerable challenge to medicinal chemists seeking to develop highly selective inhibitors as pharmacological probes and as clinical drugs. Here we report the discovery and optimization of 2,4-substituted pyrimidines as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Investigation of structure-activity relationship (SAR) utilizing biochemical and transformed Ba/F3 cellular assays resulted in identification of potent and selective inhibitors such as compounds 9 and 45. A 2.9 Å cocrystal structure of JAK3 in complex with 9 confirms the covalent interaction. Compound 9 exhibited decent pharmacokinetic properties and is suitable for use in vivo. These inhibitors provide a set of useful tools to pharmacologically interrogate JAK3-dependent biology.
Leukemia | 2006
Takeshi Inukai; Xiaochun Zhang; M Goto; Kinuko Hirose; Uno K; Koshi Akahane; Atsushi Nemoto; Kumiko Goi; Hiroki Sato; Kazuhisa Takahashi; Hiroko Honna; Keiko Kagami; K Nakamoto; Hideo Yagita; Ko Okumura; T Koyama-Okazaki; Shinpei Nakazawa; Kanji Sugita
Malignant cells generally acquire some immune escape mechanisms for clonal expansion. Immune escape mechanisms also contribute to the failure of graft-versus-leukemia (GVL) effect after allogeneic hematopoietic stem cell transplantation (allo-SCT). Infant leukemias with mixed-lineage leukemia (MLL) rearrangement have a remarkably short latency, and GVL effect after allo-SCT has not been clearly evidenced in these leukemias. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- and FasL-mediated cytotoxic pathways play important roles in cytotoxic T-lymphocyte- and natural killer cell-mediated antitumor immunity and optimal GVL activity. We investigated the in vitro sensitivity of MLL-rearranged acute lymphoblastic leukemia (ALL) and acute myeloblastic leukemia (AML) cells to TRAIL- and FasL-mediated cytotoxicity. Most of cell lines and primary leukemia cells were highly resistant to TRAIL primarily owing to low cell-surface expression of death receptors in ALL and simultaneous expression of decoy receptors in AML. Nearly half of cell lines and majority of primary leukemia cells showed low sensitivity to FasL. These results suggest that resistance to death-inducing ligands, particularly to TRAIL, could be one of the mechanisms for a rapid clonal expansion and a poor sensitivity to the GVL effect in infant leukemias with MLL rearrangement.
Cancer Research | 2007
Yoshiyuki Furuichi; Kumiko Goi; Takeshi Inukai; Hiroki Sato; Atsushi Nemoto; Kazuya Takahashi; Koshi Akahane; Kinuko Hirose; Hiroko Honna; Itaru Kuroda; Xiaochun Zhang; Keiko Kagami; Yasuhide Hayashi; Kenichi Harigaya; Shinpei Nakazawa; Kanji Sugita
Fms-like tyrosine kinase 3 (FLT3) is highly expressed in acute lymphoblastic leukemia with the mixed-lineage leukemia (MLL) gene rearrangement refractory to chemotherapy. We examined the biological effect of FLT3-ligand (FL) on 18 B-precursor leukemic cell lines with variable karyotypic abnormalities, and found that nine of nine MLL-rearranged cell lines with wild-type FLT3, in contrast to other leukemic cell lines, are significantly inhibited in their proliferation in a dose-dependent manner by FL. This inhibition was due to induction of the G0-G1 arrest. A marked up-regulation of p27 by suppression of its protein degradation and an abrogation of constitutive signal transducers and activators of transcription 5 phosphorylation were revealed in arrested leukemia cells after FL stimulation. Importantly, FL treatment rendered not only cell lines but also primary leukemia cells with MLL rearrangement resistant to chemotherapeutic agents. MLL-rearranged leukemia cells adhering to the bone marrow stromal cell line, which expresses FL as the membrane-bound form, were induced to quiescent state resistant to chemotherapeutic agents, but their chemosensitivity was significantly restored in the presence of neutralizing anti-FL antibody. The FL/FLT3 interaction between leukemia cells and bone marrow stromal cells expressing FL at high levels should contribute, at least in part, to persistent minimal-residual disease of MLL-rearranged leukemia in bone marrow.
Leukemia | 2016
Koshi Akahane; Takaomi Sanda; Marc R. Mansour; Thomas Radimerski; Daniel J. DeAngelo; David M. Weinstock; A T Look
We previously found that tyrosine kinase 2 (TYK2) signaling through its downstream effector phospho-STAT1 acts to upregulate BCL2, which in turn mediates aberrant survival of T-cell acute lymphoblastic leukemia (T-ALL) cells. Here we show that pharmacologic inhibition of heat shock protein 90 (HSP90) with a small-molecule inhibitor, NVP-AUY922 (AUY922), leads to rapid degradation of TYK2 and apoptosis in T-ALL cells. STAT1 protein levels were not affected by AUY922 treatment, but phospho-STAT1 (Tyr-701) levels rapidly became undetectable, consistent with a block in signaling downstream of TYK2. BCL2 expression was downregulated after AUY922 treatment, and although this effect was necessary for AUY922-induced apoptosis, it was not sufficient because many T-ALL cell lines were resistant to ABT-199, a specific inhibitor of BCL2. Unlike ABT-199, AUY922 also upregulated the proapoptotic proteins BIM and BAD, whose increased expression was required for AUY922-induced apoptosis. Thus, the potent cytotoxicity of AUY922 involves the synergistic combination of BCL2 downregulation coupled with upregulation of the proapoptotic proteins BIM and BAD. This two-pronged assault on the mitochondrial apoptotic machinery identifies HSP90 inhibitors as promising drugs for targeting the TYK2-mediated prosurvival signaling axis in T-ALL cells.
Bone Marrow Transplantation | 2011
Kumiko Goi; Takeshi Inukai; Hiroko Honna; Koshi Akahane; Kinuko Hirose; Itaru Kuroda; N Hasuda; K Koshizuka; K Takano; Kanji Sugita
Although autologous tandem hematopoietic SCT has improved the prognosis of patients with advanced high-risk neuroblastoma, the results remain unsatisfactory. In an attempt to induce the graft-versus-tumor effect, we performed autologous PBSCT followed by allogeneic cord blood transplantation in three consecutive advanced neuroblastoma cases with marked BM infiltration and high MYCN amplification. Severe acute complications did not occur in any patient and they have maintained disease-free survival for 37–60 months. This strategy appears to be feasible and effective for the treatment of extremely high-risk neuroblastoma cases.
eLife | 2016
Shuning He; Marc R. Mansour; Mark W. Zimmerman; Dong Hyuk Ki; Hillary M. Layden; Koshi Akahane; Evisa Gjini; Eric D. de Groh; Antonio R. Perez-Atayde; Shizhen Zhu; Jonathan A. Epstein; A. Thomas Look
Earlier reports showed that hyperplasia of sympathoadrenal cell precursors during embryogenesis in Nf1-deficient mice is independent of Nf1’s role in down-modulating RAS-MAPK signaling. We demonstrate in zebrafish that nf1 loss leads to aberrant activation of RAS signaling in MYCN-induced neuroblastomas that arise in these precursors, and that the GTPase-activating protein (GAP)-related domain (GRD) is sufficient to suppress the acceleration of neuroblastoma in nf1-deficient fish, but not the hypertrophy of sympathoadrenal cells in nf1 mutant embryos. Thus, even though neuroblastoma is a classical “developmental tumor”, NF1 relies on a very different mechanism to suppress malignant transformation than it does to modulate normal neural crest cell growth. We also show marked synergy in tumor cell killing between MEK inhibitors (trametinib) and retinoids (isotretinoin) in primary nf1a-/- zebrafish neuroblastomas. Thus, our model system has considerable translational potential for investigating new strategies to improve the treatment of very high-risk neuroblastomas with aberrant RAS-MAPK activation. DOI: http://dx.doi.org/10.7554/eLife.14713.001
Molecular Cancer Therapeutics | 2016
Atsushi Nemoto; Satoshi Saida; Itaru Kato; Jiro Kikuchi; Yusuke Furukawa; Yasuhiro Maeda; Koshi Akahane; Hiroko Honna-Oshiro; Kumiko Goi; Keiko Kagami; Shinya Kimura; Yuko Sato; Seiichi Okabe; Akira Niwa; Ken-ichiro Watanabe; Tatsutoshi Nakahata; Toshio Heike; Kanji Sugita; Takeshi Inukai
S-phase progression of the cell cycle is accelerated in tumors through various genetic abnormalities, and, thus, pharmacologic inhibition of altered cell-cycle progression would be an effective strategy to control tumors. In the current study, we analyzed the antileukemic activity of three available small molecules targeting CDK4/CDK6 against lymphoid crisis of chronic myeloid leukemia (CML-LC) and Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL), and found that all three molecules showed specific activities against leukemic cell lines derived from CML-LC and Ph+ ALL. In particular, PD0332991 exhibited extremely high antileukemic activity against CML-LC and Ph+ ALL cell lines in the nanomolar range by the induction of G0–G1 arrest and partially cell death through dephosphorylation of pRb and downregulation of the genes that are involved in S-phase transition. As an underlying mechanism for favorable sensitivity to the small molecules targeting CDK4/CDK6, cell-cycle progression of Ph+ lymphoid leukemia cells was regulated by transcriptional and posttranscriptional modulation of CDK4 as well as Cyclin D2 gene expression under the control of BCR-ABL probably through the PI3K pathway. Consistently, the gene expression level of Cyclin D2 in Ph+ lymphoid leukemia cells was significantly higher than that in Ph− lymphoid leukemia cells. Of note, three Ph+ ALL cell lines having the T315I mutation also showed sensitivity to PD0332991. In a xenograft model, PD0332991, but not imatinib, suppressed dissemination of Ph+ ALL having the T315I mutation and prolonged survival, demonstrating that this reagent would be a new therapeutic modality for relapsed CML-LC and Ph+ ALL patients after treatment with tyrosine kinase inhibitors. Mol Cancer Ther; 15(1); 94–105. ©2015 AACR.
British Journal of Haematology | 2017
Koshi Akahane; Zhaodong Li; Julia Etchin; Alla Berezovskaya; Evisa Gjini; Craig E. Masse; Wenyan Miao; Jennifer Rocnik; Rosana Kapeller; Jeremy R. Greenwood; Hong Tiv; Takaomi Sanda; David M. Weinstock; A. Thomas Look
Activation of tyrosine kinase 2 (TYK2) contributes to the aberrant survival of T‐cell acute lymphoblastic leukaemia (T‐ALL) cells. Here we demonstrate the anti‐leukaemic activity of a novel TYK2 inhibitor, NDI‐031301. NDI‐031301 is a potent and selective inhibitor of TYK2 that induced robust growth inhibition of human T‐ALL cell lines. NDI‐031301 treatment of human T‐ALL cell lines resulted in induction of apoptosis that was not observed with the JAK inhibitors tofacitinib and baricitinib. Further investigation revealed that NDI‐031301 treatment uniquely leads to activation of three mitogen‐activated protein kinases (MAPKs), resulting in phosphorylation of ERK, SAPK/JNK and p38 MAPK coincident with PARP cleavage. Activation of p38 MAPK occurred within 1 h of NDI‐031301 treatment and was responsible for NDI‐031301‐induced T‐ALL cell death, as pharmacological inhibition of p38 MAPK partially rescued apoptosis induced by TYK2 inhibitor. Finally, daily oral administration of NDI‐031301 at 100 mg/kg bid to immunodeficient mice engrafted with KOPT‐K1 T‐ALL cells was well tolerated, and led to decreased tumour burden and a significant survival benefit. These results support selective inhibition of TYK2 as a promising potential therapeutic strategy for T‐ALL.