Koshi Murata
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koshi Murata.
Neuron | 2011
Takeshi Yokoyama; Daisuke Mochimaru; Koshi Murata; Hiroyuki Manabe; Ko Kobayakawa; Reiko Kobayakawa; Hitoshi Sakano; Kensaku Mori; Masahiro Yamaguchi
Granule cells (GCs) in the mouse olfactory bulb (OB) continue to be generated in adulthood, with nearly half incorporated and the remainder eliminated. Here, we show that elimination of adult-born GCs is promoted during a short time window in the postprandial period. Under restricted feeding, the number of apoptotic GCs specifically increased within a few hours after the start of feeding. This enhanced GC apoptosis occurred in association with postprandial behaviors that included grooming, resting, and sleeping, and was particularly correlated with the length of postprandial sleep. Further, deprivation of olfactory sensory experience in the local OB area potentiated the extent of GC elimination in that area during the postprandial period. Sensory experience-dependent enhancement of GC elimination also occurred during postprandial period under natural feeding condition. These results suggest that extensive structural reorganization of bulbar circuitry occurs during the postprandial period, reflecting sensory experience during preceding waking period.
The Journal of Neuroscience | 2011
Koshi Murata; Maki Imai; Shigetada Nakanishi; Dai Watanabe; Ira Pastan; Kazuto Kobayashi; Tomoko Nihira; Hideki Mochizuki; Shuichi Yamada; Kensaku Mori; Masahiro Yamaguchi
In the olfactory bulb (OB), loss of preexisting granule cells (GCs) and incorporation of adult-born new GCs continues throughout life. GCs consist of distinct subsets. Here, we examined whether the loss and incorporation of GC subsets are coordinated in the OB. We classified GCs into mGluR2-expressing and -negative subsets and selectively ablated mGluR2-expressing GCs in a local area of the OB with immunotoxin-mediated cell ablation method. The density of mGluR2-expressing GCs showed considerable recovery within several weeks after the ablation. During recovery, an mGluR2-expressing new GC subset was preferentially incorporated over an mGluR2-negative new GC subset in the area of ablation, whereas the preferential incorporation was not observed in the intact area. The area-specific preferential incorporation of mGluR2-expressing new GCs occurred for BrdU analog- and retrovirus-labeled adult-born cells as well as for neonate-derived transplanted cells. The mGluR2-expressing new GCs in the ablated area were synaptically incorporated into the local bulbar circuit. The spine size of mGluR2-expressing new GCs in the ablated area was larger than that of those in the intact area. In contrast, mGluR2-negative new GCs did not show ablated area-specific spine enlargement. These results indicate that local OB areas have a mechanism to coordinate the loss and incorporation of GC subsets by compensatory incorporation of new GC subsets, which involves subset-specific cellular incorporation and subset-specific regulation of spine size.
The Journal of Neuroscience | 2015
Koshi Murata; Michiko Kanno; Nao Ieki; Kensaku Mori; Masahiro Yamaguchi
An odor induces food-seeking behaviors when humans and animals learned to associate the odor with food, whereas the same odor elicits aversive behaviors following odor–danger association learning. It is poorly understood how central olfactory circuits transform the learned odor cue information into appropriate motivated behaviors. The olfactory tubercle (OT) is an intriguing area of the olfactory cortex in that it contains medium spiny neurons as principal neurons and constitutes a part of the ventral striatum. The OT is therefore a candidate area for participation in odor-induced motivated behaviors. Here we mapped c-Fos activation of medium spiny neurons in different domains of the mouse OT following exposure to learned odor cues. Mice were trained to associate odor cues to a sugar reward or foot shock punishment to induce odor-guided approach behaviors or aversive behaviors. Regardless of odorant types, the anteromedial domain of the OT was activated by learned odor cues that induced approach behaviors, whereas the lateral domain was activated by learned odor cues that induced aversive behaviors. In each domain, a larger number of dopamine receptor D1 type neurons were activated than D2 type neurons. These results indicate that specific domains of the OT represent odor-induced distinct motivated behaviors rather than odor stimuli, and raise the possibility that neuronal type-specific activation in individual domains of the OT plays crucial roles in mediating the appropriate learned odor-induced motivated behaviors. SIGNIFICANCE STATEMENT Although animals learn to associate odor cues with various motivated behaviors, the underlying circuit mechanisms are poorly understood. The olfactory tubercle (OT), a subarea of the olfactory cortex, also constitutes the ventral striatum. Here, we trained mice to associate odors with either reward or punishment and mapped odor-induced c-Fos activation in the OT. Regardless of odorant types, the anteromedial domain was activated by approach behavior-inducing odors, whereas the lateral domain was activated by aversive behavior-inducing odors. In each domain, dopamine receptor D1 neurons were preferentially activated over D2 neurons. The results indicate that specific OT domains represent odor-induced distinct motivated behaviors rather than odor types, and suggest the importance of neuronal type-specific activation in individual domains in mediating appropriate behaviors.
Neuroscience Letters | 2015
Sayaka Komano-Inoue; Koshi Murata; Kensaku Mori; Masahiro Yamaguchi
Elimination of granule cells (GCs) in the olfactory bulb (OB) is not a continuous event but is rather promoted during short time windows associated with the animals behavior. We previously showed that apoptotic GC elimination is enhanced during food eating and subsequent rest or sleep, and that top-down inputs from the olfactory cortex (OC) to the OB during the postprandial period are the crucial signal promoting GC elimination. However, whether enhanced GC elimination occurs during behaviors other than postprandial behavior is not clear. Here, we investigated whether exposure to noxious stimulation promotes apoptotic GC elimination in mice. Mice were delivered a brief electrical foot shock, during and immediately after which they showed startle and fear responses. Surprisingly, the number of apoptotic GCs increased 2-fold within 10 min after the start of foot shock delivery. This enhancement of GC apoptosis was significantly suppressed by injection of the GABAA receptor agonist muscimol in the OC, despite these muscimol-injected mice showing similar behavioral responses by foot shock as control mice. These results indicate that GC elimination is promoted in foot shock-delivered mice within a short time period of startle and fear responses. They also indicate that OC activity plays a central role in the enhanced GC elimination during this period, as is also the case in GC elimination during the postprandial period.
bioRxiv | 2018
Koshi Murata; Tomoki Kinoshita; Yugo Fukazawa; Kenta Kobayashi; Akihiro Yamanaka; Takatoshi Hikida; Hiroyuki Manabe; Masahiro Yamaguchi
Olfaction induces adaptive motivated behaviors. Odors associated with food induce attractive behavior, whereas those associated with dangers induce aversive behavior. We previously reported that learned odor-induced attractive and aversive behaviors accompany activation of the olfactory tubercle (OT) in a domainand cell type-specific manner. Odor cues associated with a sugar reward induced attractive behavior and c-fos expression in the dopamine receptor D1-expressing neurons (D1 neurons) in the anteromedial OT. In contrast, odor cues associated with electrical shock induced aversive behavior and c-fos expression in the D2 neurons in the anteromedial OT, as well as the D1 neurons in the lateral OT. Here, we investigated whether the D1 and D2 neurons in the anteromedial OT play distinct roles in attractive or aversive behaviors, using optogenetic stimulation and real-time place preference (RTPP) tests. Mice expressing ChETA (ChR2/E123T)-EYFP in the D1 neurons in the anteromedial OT spent a longer time in the photo-stimulation side of the place preference chamber than the control mice expressing EYFP. On the other hand, upon optogenetic stimulation of the D2 neurons in the anteromedial OT, the mice spent a shorter time in the photo-stimulation side than the control mice. Local neural activation in the anteromedial OT during the RTPP tests was confirmed by c-fos mRNA expression. These results suggest that the D1 and D2 neurons in the anteromedial OT play distinct roles in attractive and aversive behaviors, respectively.
bioRxiv | 2018
Koshi Murata; Tomoki Kinoshita; Yugo Fukazawa; Kenta Kobayashi; Kazuto Kobayashi; Kazunari Miyamichi; Hiroyuki Okuno; Haruhiko Bito; Yoshio Sakurai; Masahiro Yamaguchi; Kensaku Mori; Hiroyuki Manabe
Olfaction guides goal-directed behaviours including feeding. To investigate how central olfactory neural circuits control feeding behaviour in mice, we performed retrograde tracing from the lateral hypothalamus (LH), an important feeding centre. We observed a cluster of retrogradely labelled cells distributed in the posteroventral region of the olfactory peduncle. Histochemical analyses revealed that a majority of these retrogradely labelled projection neurons expressed glutamic acid decarboxylase 65/67 (GAD65/67), but not vesicular glutamate transporter 1 (VGluT1). We named this region with GABAergic projection neurons the ventral olfactory nucleus (VON) to discriminate it from the conventional olfactory peduncle. VON neurons were less immunoreactive for DARPP-32, a striatal neuron marker, in comparison to those in the olfactory tubercle and nucleus accumbens, which distinguished the VON from the ventral striatum. Fluorescent labelling confirmed synaptic contacts between VON neurons and olfactory bulb projection neurons. Rabies-virus-mediated trans-synaptic labelling revealed that VON neurons received synaptic inputs from the olfactory bulb, other olfactory cortices, horizontal limb of the diagonal band, and prefrontal cortex. Collectively, these results identified novel GABAergic projection neurons in the olfactory cortex that can integrate olfactory sensory and top-down inputs and send inhibitory output to the LH, which may contribute to forming odour-guided LH-related behaviours.
Scientific Reports | 2018
Wataru Murofushi; Kensaku Mori; Koshi Murata; Masahiro Yamaguchi
Mammals shift their feeding habits from mother’s milk to environmental foods postnatally. While this weaning process accompanies the acquisition of attractive behaviour toward environmental foods, the underlying neural mechanism for the acquisition is poorly understood. We previously found that adult mouse olfactory tubercle (OT), which belongs to the olfactory cortex and ventral striatum, has functional domains that represent odour-induced motivated behaviours, and that c-fos induction occurs mainly in the anteromedial domain of OT following learned odour-induced food seeking behaviour. To address the question whether the anteromedial OT domain is involved in the postnatal acquisition of food seeking behaviour, we examined OT development during weaning of mice. Whereas at postnatal day 15 (P15), all mice were attracted to lactating mothers, P21 mice were more attracted to familiar food pellets. Mapping of c-fos induction during food seeking and eating behaviours showed that while c-fos activation was observed across wide OT domains at P15, the preferential activation of c-fos in the anteromedial domain occurred at P21 and later ages. These results indicate that preferential c-fos activation in the anteromedial OT domain occurred concomitantly with the acquisition of attractive behaviour toward food, which suggests the importance of this domain in the weaning process.
Neuroscience Research | 2010
Koshi Murata; Shigetada Nakanishi; Kazuto Kobayashi; Hideki Mochizuki; Kensaku Mori; Masahiro Yamaguchi
lated movement of neurons in three-dimensional space. In the present study, we have chosen the pontine nucleus (PN), a typical nuclear structure in the hindbrain, as a model and analyzed the process of nucleogeneis in the threedimensional space. We electroporated a mixture of cre and floxed-gfp genes to the lower rhombic lip of mouse embryos at E12.5 in utero to sparsely label PN neurons. We then analyzed the behavior of PN neurons at the nuclear region between E15.5 and E18.5 by time-lapse imaging and observation of fixed samples. We found that PN neurons entering the PN region migrated unidirectionally toward midline and were added ventrally to earlier arriving neurons. Interestingly, a major proportion of PN neurons that have once arrived at the PN region initiated retrograde migration either radially, tangentially or horizontally. Our results demonstrate that PN is initially formed by orderly addition of neurons as a result of unidirectional migration into the nuclear region. We propose that the subsequent occurrence of retrograde and reoriented migration may contribute to the final three-dimensional structure of the mature nuclei.
Frontiers in Neural Circuits | 2013
Masahiro Yamaguchi; Hiroyuki Manabe; Koshi Murata; Kensaku Mori
Neuroscience Research | 2009
Koshi Murata; Shigetada Nakanishi; Kobayashi Kazuto; Kensaku Mori; Masahiro Yamaguchi