Koshika Yadava
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koshika Yadava.
Nature Medicine | 2014
Aurelien Trompette; Eva S. Gollwitzer; Koshika Yadava; Anke Sichelstiel; Norbert Sprenger; Catherine Ngom-Bru; Carine Blanchard; Tobias Junt; Laurent Nicod; Nicola L. Harris; Benjamin J. Marsland
Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein–coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.
American Journal of Respiratory and Critical Care Medicine | 2011
Tina Herbst; Anke Sichelstiel; Corinne Schär; Koshika Yadava; Kurt Bürki; Julia Cahenzli; Kathy D. McCoy; Benjamin J. Marsland; Nicola L. Harris
RATIONALE The incidence of allergic disorders is increasing in developed countries and has been associated with reduced exposure to microbes and alterations in the commensal bacterial flora. OBJECTIVES To ascertain the relevance of commensal bacteria on the development of an allergic response, we used a model of allergic airway inflammation in germ-free (GF) mice that lack any exposure to pathogenic or nonpathogenic microorganisms. METHODS Allergic airway inflammation was induced in GF, specific pathogen-free (SPF), or recolonized mice by sensitization and challenge with ovalbumin. The resulting cellular infiltrate and cytokine production were measured. MEASUREMENTS AND MAIN RESULTS Our results show that the total number of infiltrating lymphocytes and eosinophils were elevated in the airways of allergic GF mice compared with control SPF mice, and that this increase could be reversed by recolonization of GF mice with the complex commensal flora of SPF mice. Exaggerated airway eosinophilia correlated with increased local production of Th2-associated cytokines, elevated IgE production, and an altered number and phenotype of conventional dendritic cells. Regulatory T-cell populations and regulatory cytokine levels were unaltered, but GF mice exhibited an increased number of basophils and decreased numbers of alveolar macrophages and plasmacytoid dendritic cells. CONCLUSIONS These data demonstrate that the presence of commensal bacteria is critical for ensuring normal cellular maturation, recruitment, and control of allergic airway inflammation.
Nature Medicine | 2014
Eva S. Gollwitzer; Sejal Saglani; Aurelien Trompette; Koshika Yadava; Rebekah Sherburn; Kathy D. McCoy; Laurent P. Nicod; Benjamin J. Marsland
Epidemiological data point toward a critical period in early life during which environmental cues can set an individual on a trajectory toward respiratory health or disease. The neonatal immune system matures during this period, although little is known about the signals that lead to its maturation. Here we report that the formation of the lung microbiota is a key parameter in this process. Immediately following birth, neonatal mice were prone to develop exaggerated airway eosinophilia, release type 2 helper T cell cytokines and exhibit airway hyper-responsiveness following exposure to house dust mite allergens, even though their lungs harbored high numbers of natural CD4+Foxp3+CD25+Helios+ regulatory T (Treg) cells. During the first 2 weeks after birth, the bacterial load in the lungs increased, and representation of the bacterial phyla shifts from a predominance of Gammaproteobacteria and Firmicutes towards Bacteroidetes. The changes in the microbiota were associated with decreased aeroallergen responsiveness and the emergence of a Helios− Treg cell subset that required interaction with programmed death ligand 1 (PD-L1) for development. Absence of microbial colonization10 or blockade of PD-L1 during the first 2 weeks postpartum maintained exaggerated responsiveness to allergens through to adulthood. Adoptive transfer of Treg cells from adult mice to neonates before aeroallergen exposure ameliorated disease. Thus, formation of the airway microbiota induces regulatory cells early in life, which, when dysregulated, can lead to sustained susceptibility to allergic airway inflammation in adulthood.
Chest | 2013
Benjamin J. Marsland; Koshika Yadava; Laurent Nicod
Although traditionally thought to be sterile, accumulating evidence now supports the concept that our airways harbor a microbiome. Thus far, studies have focused upon characterizing the bacterial constituents of the airway microbiome in both healthy and diseased lungs, but what perhaps provides the greatest impetus for the exploration of the airway microbiome is that different bacterial phyla appear to dominate diseased as compared with healthy lungs. As yet, there is very limited evidence supporting a functional role for the airway microbiome, but continued research in this direction is likely to provide such evidence, particularly considering the progress that has been made in understanding host-microbe mutualism in the intestinal tract. In this review, we highlight the major advances that have been made discovering and describing the airway microbiome, discuss the experimental evidence that supports a functional role for the microbiome in health and disease, and propose how this emerging field is going to impact clinical practice.
Mucosal Immunology | 2013
Koshika Yadava; Anke Sichelstiel; Immanuel F. Luescher; Laurent Nicod; Nicola L. Harris; Benjamin J. Marsland
Thymic stromal lymphopoietin (TSLP) is a mucosal tissue-associated cytokine that has been widely studied in the context of T helper type 2 (Th2)-driven inflammatory disorders. Although TSLP is also produced upon viral infection in vitro, the role of TSLP in antiviral immunity is unknown. In this study we report a novel role for TSLP in promoting viral clearance and virus-specific CD8+ T-cell responses during influenza A infection. Comparing the immune responses of wild-type and TSLP receptor (TSLPR)-deficient mice, we show that TSLP was required for the expansion and activation of virus-specific effector CD8+ T cells in the lung, but not the lymph node. The mechanism involved TSLPR signaling on newly recruited CD11b+ inflammatory dendritic cells (DCs) that acted to enhance interleukin-15 production and expression of the costimulatory molecule CD70. Taken together, these data highlight the pleiotropic activities of TSLP and provide evidence for its beneficial role in antiviral immunity.
Blood | 2010
Luigi Tortola; Koshika Yadava; Martin F. Bachmann; Christoph Müller; Jan Kisielow; Manfred Kopf
Interleukin-2 (IL-2) and IL-21 share activities in the control of T- and B-cell maturation, proliferation, function, and survival. However, opposing roles for IL-2 and IL-21 have been reported in the development of regulatory T cells. To dissect unique, redundant, and opposing activities of IL-2 and IL-21, we compared T- and B-cell development and function in mice lacking both IL-2 receptor α (IL-2Rα) and IL-21R (double knockouts [DKO]) with single knockout and wild-type (WT) mice. Similarly to il2ra(-/-) mice, DKO showed reduced numbers of regulatory T cells and, consequently, hyper-activation and proliferation of T cells associated with inflammatory disease (ie, colitis), weight loss, and reduced survival. The absence of IL-2Rα resulted in overproduction of IL-21 by IFN-γ-producing CD4(+) T cells, which induced apoptosis of marginal zone (MZ) B cells. Hence, MZ B cells and MZ B-cell immunoglobulin M antibody responses to Streptococcus pneumoniae phosophorylcholine were absent in il2ra(-/-) mice but were completely restored in DKO mice. Our results highlight key roles of IL-2 in inhibiting IL-21 production by CD4(+) T cells and of IL-21 in negatively regulating MZ B-cell survival and antibody production.
PLOS ONE | 2014
Anke Sichelstiel; Koshika Yadava; Aurelien Trompette; Olawale Salami; Yoichiro Iwakura; Laurent Nicod; Benjamin J. Marsland
For patients with chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), exacerbations are life-threatening events causing acute respiratory distress that can even lead to hospitalization and death. Although a great deal of effort has been put into research of exacerbations and potential treatment options, the exact underlying mechanisms are yet to be deciphered and no therapy that effectively targets the excessive inflammation is available. In this study, we report that interleukin-1β (IL-1β) and interleukin-17A (IL-17A) are key mediators of neutrophilic inflammation in influenza-induced exacerbations of chronic lung inflammation. Using a mouse model of disease, our data shows a role for IL-1β in mediating lung dysfunction, and in driving neutrophilic inflammation during the whole phase of viral infection. We further report a role for IL-17A as a mediator of IL-1β induced neutrophilia at early time points during influenza-induced exacerbations. Blocking of IL-17A or IL-1 resulted in a significant abrogation of neutrophil recruitment to the airways in the initial phase of infection or at the peak of viral replication, respectively. Therefore, IL-17A and IL-1β are potential targets for therapeutic treatment of viral exacerbations of chronic lung inflammation
Thorax | 2013
Koshika Yadava; Benjamin J. Marsland
Lymphoid follicles (LFs) can be induced in the lung on infection or chronic inflammation; however, their relevance and contribution to protective immunity or pathogenesis is poorly understood. Recent advances from clinical studies and animal models have shed some light on the mechanisms that trigger and facilitate the development of LFs. As we grasp a better understanding of their development and their relevance to disease, the potential value in targeting pulmonary LFs with novel therapeutics will become evident.
Frontiers of Medicine in China | 2014
Christian Pasquali; Olawale Salami; Manisha Taneja; Eva S. Gollwitzer; Aurelien Trompette; Céline Pattaroni; Koshika Yadava; Jacques Bauer; Benjamin J. Marsland
Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae.
Allergy | 2014
Koshika Yadava; Joanna Massacand; Ilaria Mosconi; Laurent Nicod; Nicola L. Harris; Benjamin J. Marsland
Thymic stromal lymphopoietin (TSLP) is a cytokine primarily produced by epithelial cells, which has been shown to be a potent inducer of T‐helper 2 (Th2)‐type responses. However, TSLP has pleiotropic effects upon immune cells, and although extensively studied in the context of atopic asthma, its relevance as a therapeutic target and its role in the pathogenesis of nonatopic asthma remains unknown. We sought to investigate the role of TSLP in atopic, nonatopic and viral‐induced exacerbations of pulmonary inflammation.