Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Koshy Philip is active.

Publication


Featured researches published by Koshy Philip.


PLOS ONE | 2013

Enhanced Production, Purification, Characterization and Mechanism of Action of Salivaricin 9 Lantibiotic Produced by Streptococcus salivarius NU10

Abdelahhad Barbour; Koshy Philip; Sekaran Muniandy

Background Lantibiotics are small lanthionine-containing bacteriocins produced by lactic acid bacteria. Salivaricin 9 is a newly discovered lantibiotic produced by Streptococcus salivarius. In this study we present the mechanism of action of salivaricin 9 and some of its properties. Also we developed new methods to produce and purify the lantibiotic from strain NU10. Methodology / Principal Findings Salivaricin 9 was found to be auto-regulated when an induction assay was applied and this finding was used to develop a successful salivaricin 9 production system in liquid medium. A combination of XAD-16 and cation exchange chromatography was used to purify the secondary metabolite which was shown to have a molecular weight of approximately 3000 Da by SDS-PAGE. MALDI-TOF MS analysis indicated the presence of salivaricin 9, a 2560 Da lantibiotic. Salivaricin 9 is a bactericidal molecule targeting the cytoplasmic membrane of sensitive cells. The membrane permeabilization assay showed that salivaricin 9 penetrated the cytoplasmic membrane and induced pore formation which resulted in cell death. The morphological changes of test bacterial strains incubated with salivaricin 9 were visualized using Scanning Electron Microscopy which confirmed a pore forming mechanism of inhibition. Salivaricin 9 retained biological stability when exposed to high temperature (90-100°C) and stayed bioactive at pH ranging 2 to 10. When treated with proteinase K or peptidase, salivaricin 9 lost all antimicrobial activity, while it remained active when treated with lyticase, catalase and certain detergents. Conclusion The mechanism of antimicrobial action of a newly discovered lantibiotic salivaricin 9 was elucidated in this study. Salivaricin 9 penetrated the cytoplasmic membrane of its targeted cells and induced pore formation. This project has given new insights on lantibiotic peptides produced by S. salivarius isolated from the oral cavities of Malaysian subjects.


PLOS ONE | 2014

Variable characteristics of bacteriocin-producing Streptococcus salivarius strains isolated from Malaysian subjects.

Abdelahhad Barbour; Koshy Philip

Background Salivaricins are bacteriocins produced by Streptococcus salivarius, some strains of which can have significant probiotic effects. S. salivarius strains were isolated from Malaysian subjects showing variable antimicrobial activity, metabolic profile, antibiotic susceptibility and lantibiotic production. Methodology/Principal Findings In this study we report new S. salivarius strains isolated from Malaysian subjects with potential as probiotics. Safety assessment of these strains included their antibiotic susceptibility and metabolic profiles. Genome sequencing using Illumina’s MiSeq system was performed for both strains NU10 and YU10 and demonstrating the absence of any known streptococcal virulence determinants indicating that these strains are safe for subsequent use as probiotics. Strain NU10 was found to harbour genes encoding salivaricins A and 9 while strain YU10 was shown to harbour genes encoding salivaricins A3, G32, streptin and slnA1 lantibiotic-like protein. Strain GT2 was shown to harbour genes encoding a large non-lantibiotic bacteriocin (salivaricin-MPS). A new medium for maximum biomass production buffered with 2-(N-morpholino)ethanesulfonic acid (MES) was developed and showed better biomass accumulation compared with other commercial media. Furthermore, we extracted and purified salivaricin 9 (by strain NU10) and salivaricin G32 (by strain YU10) from S. salivarius cells grown aerobically in this medium. In addition to bacteriocin production, S. salivarius strains produced levan-sucrase which was detected by a specific ESI-LC-MS/MS method which indicates additional health benefits from the developed strains. Conclusion The current study established the bacteriocin, levan-sucrase production and basic safety features of S. salivarius strains isolated from healthy Malaysian subjects demonstrating their potential for use as probiotics. A new bacteriocin-production medium was developed with potential scale up application for pharmaceuticals and probiotics from S. salivarius generating different lantibiotics. This is relevant for the clinical management of oral cavity and upper respiratory tract in the human population.


PLOS ONE | 2015

Purification and Characterization of Bacteriocin Produced by Weissella confusa A3 of Dairy Origin

Hweh Fen Goh; Koshy Philip

A dramatic increase in bacterial resistance towards currently available antibiotics has raised worldwide concerns for public health. Therefore, antimicrobial peptides (AMPs) have emerged as a promisingly new group of therapeutic agents for managing infectious diseases. The present investigation focusses on the isolation and purification of a novel bacteriocin from an indigenous sample of cow milk and it’s mode of action. The bacteriocin was isolated from Weissella confusa A3 that was isolated from the sample and was shown to have inhibitory activity towards pathogenic bacteria namely Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Micrococcus luteus. The bacteriocin was shown to be heat stable and functioned well at low pH (2 to 6). Reduction of activity was shown after treatment with proteinase K, trypsin and peptidase that confirmed the proteinaceous nature of the compound. MALDI-TOF analysis of the sample gave a mass approximating 2.7 kDa. The membrane of the bacteria was disrupted by the bacteriocin causing SYTOX® green dye to enter the cell and bind to the bacterial DNA giving fluorescence signal. Bacterial cell treated with the bacteriocin also showed significant morphological changes under transmission electron microscope. No virulence and disease related genes can be detected from the genome of the strain.


African Journal of Biotechnology | 2010

Antioxidant and antibacterial activities of ethanolic extracts of Asparagus officinalis cv. Mary Washington: Comparison of in vivo and in vitro grown plant bioactivities.

Arash Khorasani; Wirakarnain Sani; Koshy Philip; Rosna Mat Taha; Arash Rafat

Medicinal plants are important elements of indigenous medical system that have persisted in developing countries. Many of the pharmacological principles currently used as anticancer agents were first isolated from plants. However, some important anticancer agents are still extracted from plants because they cannot be synthesized chemically on a commercial scale due to their complex structures that often contain several chiral centers. The aim of this study was to test different extracts from the leaves of Moringa or drumstick tree ( Moringa oleifera ) for activity against leukemia and hepatocarcinoma cells in vitro . The extracts could kill majority (70 - 86%) of the abnormal cells among primary cells harvested from 10 patients with acute lymphoblastic leukemia (ALL) and 15 with acute myeloid leukemia (AML) as well as a culture of hepatocarcinoma cells (75% death), but most significantly by the hot water and ethanol extracts. In conclusion, M. oleifera may have potential for use as source of natural treatment for diseases such as cancer.


Scientific Reports | 2016

New insights into the mode of action of the lantibiotic salivaricin B

Abdelahhad Barbour; John R. Tagg; Osama K. Abou-Zied; Koshy Philip

Salivaricin B is a 25 amino acid polycyclic peptide belonging to the type AII lantibiotics and first shown to be produced by Streptococcus salivarius. In this study we describe the bactericidal mode of action of salivaricin B against susceptible Gram-positive bacteria. The killing action of salivaricin B required micro-molar concentrations of lantibiotic whereas the prototype lantibiotic nisin A was shown to be potent at nano-molar levels. Unlike nisin A, salivaricin B did not induce pore formation or dissipate the membrane potential in susceptible cells. This was established by measuring the fluorescence of the tryptophan residue at position 17 when salivaricin B interacted with bacterial membrane vesicles. The absence of a fluorescence blue shift indicates a failure of salivaricin B to penetrate the membranes. On the other hand, salivaricin B interfered with cell wall biosynthesis, as shown by the accumulation of the final soluble cell wall precursor UDP-MurNAc-pentapeptide which is the backbone of the bacterial peptidoglycan. Transmission electron microscopy of salivaricin B-treated cells showed a reduction in cell wall thickness together with signs of aberrant septum formation in the absence of visible changes to cytoplasmic membrane integrity.


Journal of Dairy Science | 2015

Isolation and mode of action of bacteriocin BacC1 produced by nonpathogenic Enterococcus faecium C1

H.F. Goh; Koshy Philip

Lactic acid bacteria are present in fermented food products and help to improve shelf life and enhance the flavor of the food. They also produce metabolites such as bacteriocins to prevent the growth of undesirable or pathogenic bacteria. In this study, Enterococcus faecium C1 isolated from fermented cow milk was able to produce bacteriocin BacC1 and inhibit the growth of selected food-spoilage bacteria. The bacteriocin was purified through 4 steps: ammonium sulfate precipitation, hydrophobic interaction column, a series of centrifugal steps, and finally reversed-phase HPLC. A membrane permeability test using SYTOX green dye (Invitrogen, Grand Island, NY) showed that the bacteriocin caused significant disruptions to the test bacterial membrane, as shown by transmission electron microscopy. The molecular weight of the BacC1 obtained from SDS-PAGE was around 10kDa, and N-terminal sequencing revealed a partial amino acid sequence of BacC1: GPXGPXGP. The bacterial strain was nonhemolytic and not antibiotic resistant. Therefore, it has high potential for application in the food industry as an antimicrobial agent to extend the shelf life of food products.


International Journal of Food Properties | 2011

Antioxidant Properties of Indigenous Raw and Fermented Salad Plants

Arash Rafat; Koshy Philip; Sekaran Muniandy

This study evaluates the antioxidant potential of selected plant species by assessing three parameters: antioxidant inhibition of hydrogen peroxide induced hemolysis, free radical scavenging activity and presence of superoxide dismutase activity. Protection against hemolysis was assessed by the rabbit erythrocyte hemolysis assay while free radical scavenging activity was estimated spectophotometrically using 2,2–diphenyl-1-picrylhydrazil as the scavenger. Superoxide dismutase was assessed by measuring the inhibition by superoxide dismutase on the reaction of xanthine oxide generated superoxide radical with a tetrazolium salt. The best protection against hydrogen peroxide induced hemolysis was by extracts of lemon grass (Cymbopogon citratus) leaves. Hempedu bumi (Andrographis paniculata), garlic (Allium sativum) and turmeric (Curcuma domestica) also showed significant anti-hemolytic effect. Good free radical scavenging activity was shown by raw and fermented bean (Phaseolus vulgaris), hempedu bumi (Andrographis paniculata) and ulam raja (Cosmos caudatus). Ulam raja (Cosmos caudatus), lemon grass, hempedu bumi and turmeric showed significant superoxide dismutase activity. The antioxidant potential of Andrographis paniculata was good as evident by the three parameters assayed. However, neem (Azadirachta indica) has limited antioxidant potential. Plants with good antioxidant capabilities include lemon grass and garlic.


Frontiers in Microbiology | 2018

Pentocin MQ1: A Novel, Broad-Spectrum, Pore-Forming Bacteriocin From Lactobacillus pentosus CS2 With Quorum Sensing Regulatory Mechanism and Biopreservative Potential

Samson Baranzan Wayah; Koshy Philip

Micrococcus luteus, Listeria monocytogenes, and Bacillus cereus are major food-borne pathogenic and spoilage bacteria. Emergence of antibiotic resistance and consumer demand for foods containing less of chemical preservatives led to a search for natural antimicrobials. A study aimed at characterizing, investigating the mechanism of action and regulation of biosynthesis and evaluating the biopreservative potential of pentocin from Lactobacillus pentosus CS2 was conducted. Pentocin MQ1 is a novel bacteriocin isolated from L. pentosus CS2 of coconut shake origin. The purification strategy involved adsorption-desorption of bacteriocin followed by RP-HPLC. It has a molecular weight of 2110.672 Da as determined by MALDI-TOF mass spectrometry and a molar extinction value of 298.82 M−1 cm−1. Pentocin MQ1 is not plasmid-borne and its biosynthesis is regulated by a quorum sensing mechanism. It has a broad spectrum of antibacterial activity, exhibited high chemical, thermal and pH stability but proved sensitive to proteolytic enzymes. It is potent against M. luteus, B. cereus, and L. monocytogenes at micromolar concentrations. It is quick-acting and exhibited a bactericidal mode of action against its targets. Target killing was mediated by pore formation. We report for the first time membrane permeabilization as a mechanism of action of the pentocin from the study against Gram-positive bacteria. Pentocin MQ1 is a cell wall-associated bacteriocin. Application of pentocin MQ1 improved the microbiological quality and extended the shelf life of fresh banana. This is the first report on the biopreservation of banana using bacteriocin. These findings place pentocin MQ1 as a potential biopreservative for further evaluation in food and medical applications.


PeerJ | 2016

Antibacterial and anti-adherence effects of a plant extract mixture (PEM) and its individual constituent extracts (Psidium sp., Mangifera sp., and Mentha sp.) on single- and dual-species biofilms.

Zaleha Shafiei; Zubaidah Haji Abdul Rahim; Koshy Philip; Nalina Thurairajah

Background Plant extracts mixture (PEM) and its individual constituent plant extracts(Psidium sp., Mangifera sp., Mentha sp.) are known to have an anti-adhering effect towards oral bacteria in the single-species biofilm. To date, the adhering ability of the early and late plaque colonisers (Streptococcus sanguinis and Streptococcus mutans) to PEM-treated experimental pellicle have not been investigated in dual-species biofilms. Methods Fresh leaves of these plants were used in the preparation of the respective aqueous extract decoctions. The minimum inhibitory concentration (MIC) of the extracts towards S. sanguinis ATCC BAA-1455 and S. mutans ATCC 25175 was determined using a two-fold serial microdilution method. The sum of fractional inhibitory concentration (ΣFIC) index of PEM and its constituent plant extracts was calculated using the MIC values of the plants. The minimum bactericidal concentration (MBC) of the plant extracts was also determined. The anti-adherence effect of the plant extracts (individually and mixed) was carried out by developing simulated S. sanguinis and S. mutans respectively in single- and dual-species of biofilms in the Nordini’s Artificial Mouth (NAM) model system in which the experimental pellicle was pretreated with the plant extract before bacterial inoculation. The bacterial population in the respective biofilms was quantified using ten-fold serial dilutions method and expressed as colony forming unit per ml (CFU/ml). The bacterial population was also viewed using Scanning Electron Microscope (SEM). All experiments were done in triplicate. Results The PEM compared with its respective constituent plants showed the lowest MIC towards S. sanguinis (3.81 mg/ml) and S. mutans (1.91 mg/ml) and exhibited a synergistic effect. The Psidium sp. (15.24 mg/ml) and, PEM and Psidium sp. (30.48 mg/ml) showed the lowest MBC towards S. sanguinis and S. mutans respectively. The anti-adherence effect of the PEM and its respective constituent plants (except Psidium sp.) was different for the two bacteria in the single-species biofilm. In the dual-species biofilms, PEM demonstrated similar anti-adherence effect towards S. sanguinis and S. mutans. The proportions of the bacterial population viewed under SEM appeared to be in agreement with the quantified population. Discussion The combination of the active constituents of the individual plant extracts in PEM may contribute to its low MIC giving rise to the synergistic effect. The different anti-adherence effect towards S. sanguinis and S. mutans in both single- and dual-species biofilms could be due to the different proportion of the active constituents of the extracts and the interaction between different bacteria. The better adhering ability of S. sanguinis towards the PEM-treated pellicle when present together with S. mutans in the dual-species biofilms may suggest the potential of PEM in controlling the balance between the early and late colonisers in biofilms.


RSC Advances | 2015

Elucidating the mechanism of peptide interaction with membranes using the intrinsic fluorescence of tryptophan: perpendicular penetration of cecropin B-like peptides into Pseudomonas aeruginosa

Osama K. Abou-Zied; Abdelahhad Barbour; Nada A. Al-Sharji; Koshy Philip

The importance of small molecular weight antimicrobial peptides as novel therapeutic agents stems from their ability to act against bacteria, viruses, and fungi. As part of the innate immune system, they are also capable of killing cancerous cells. Herein, we study the interaction between a synthetic cecropin B peptide and a target Pseudomonas aeruginosa (PA) membrane using steady-state and time-resolved fluorescence measurements in order to elucidate the mechanism of membrane rupture. The importance of synthetic cecropin B as a therapeutic peptide stems from its effect against a wide range of bacteria which is indistinguishable from that of naturally occuring cecropins. Fluorescence of cecropin B results from the sole tryptophan residue in the peptide. In order to understand the mechansim of peptide–membrane binding, we modified the original peptide (cecropin B1: KWKVFKKIEKMGRNIRNGIV) by attaching a terminal tryptophan residue (cecropin B2: KWKVFKKIEKMGRNIRNGIVW). Both peptides show a large inhibition effect against a wide range of bacteria, compared to naturally occurring peptides. The fluorescence results show an enhancement in the peak intensity of cecropin B1 upon mixing with the membrane, accompanied by a blue shift. For cecropin B2, a blue shift was observed upon mixing with the PA membrane, but no enhancement in intensity was observed. The results indicate perpendicular penetration of cecropins B1 and B2 from the Lys side where the Trp residue of cecropin B1 is immersed in the PA membrane. Partial quenching of the Trp fluorescence by acrylamide was observed and the values of the Stern–Volmer constants (Ksv) indicate that the Trp molecule penetrates into the membrane, but resides close to the interface region. Two fluorescence lifetimes were measured for the cecropin B1–PA complex which are for two rotamers of Trp. The results point to a degree of flexibility of the local environment around the Trp molecule. A mechanism of membrane disruption is proposed in which the cecropin peptide creates cracks through the negatively charged outer membrane of PA.

Collaboration


Dive into the Koshy Philip's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge