Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kostas Tsintzas is active.

Publication


Featured researches published by Kostas Tsintzas.


Sports Medicine | 1998

Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation.

Kostas Tsintzas; Clyde Williams

SummaryCarbohydrate (CHO) ingestion during exercise, in the form of CHO-electrolyte beverages, leads to performance benefits during prolonged submaximal and variable intensity exercise. However, the mechanism underlying this ergogenic effect is less clear. Euglycaemia and oxidation of blood glucose at high rates late in exercise and a decreased rate of muscle glycogen utilisation (i.e. glycogen ‘sparing’) have been proposed as possible mechanisms underlying the ergogenic effect of CHO ingestion. The prevalence of one or the other mechanism depends on factors such as the type and intensity of exercise, amount, type and timing of CHO ingestion, and pre-exercise nutritional and training status of study participants. The type and intensity of exercise and the effect of these on blood glucose, plasma insulin and catecholamine levels, may play a major role in determining the rate of muscle glycogen utilisation when CHO is ingested during exercise. The ingestion of CHO (except fructose) at a rate of >45 g/h, accompanied by a significant increase in plasma insulin levels, could lead to decreased muscle glycogen utilisation (particularly in type I fibres) during exercise. Endurance training and alterations in pre-exercise muscle glycogen levels do not seem to affect exogenous glucose oxidation during submaximal exercise. Thus, at least during low intensity or intermittent exercise, CHO ingestion could result in reduced muscle glycogen utilisation in well trained individuals with high resting muscle glycogen levels. Further research needs to concentrate on factors that regulate glucose uptake and energy metabolism in different types of muscle fibres during exercise with and without CHO ingestion.


Medicine and Science in Sports and Exercise | 1999

Carbohydrate-electrolyte ingestion during intermittent high-intensity running.

Ceri W. Nicholas; Kostas Tsintzas; Leslie Boobis; Clyde Williams

PURPOSE The purpose of this study was to examine the effects of ingesting a carbohydrate-electrolyte beverage or a noncarbohydrate placebo on muscle glycogen utilization during 90 min of intermittent high-intensity running. METHODS Six trained games players (age 24.6 +/- 2.2 yr; height 179.6 +/- 1.9 cm; body mass 74.5 +/- 2.0 kg; VO2max 56.3 +/- 1.3 mL x kg(-1) x min(-1); mean +/- SEM) performed two exercise trials, 7 d apart. The subjects were university soccer, hockey, or rugby players. On each occasion, they completed six 15-min periods of intermittent running, consisting of maximal sprinting, interspersed with less intense periods of running and walking. During each trial, subjects consumed either a 6.9% carbohydrate-electrolyte solution (CHO-E: the CHO trial) or a noncarbohydrate placebo (the CON trial) immediately before exercise (5 mL x kg(-1) BM) and after every 15 min of exercise thereafter (2 mL x kg(-1) BM). Drinks were administered in a double-blind, counter-balanced order, and the total volume of fluid consumed during each trial was 1114 +/- 30 mL. Needle biopsy samples were obtained from the vastus lateralis muscle before and after 90 min of exercise. Venous blood samples were collected from an antecubital vein at rest and every 30 min during exercise. RESULTS Muscle glycogen utilization in mixed muscle samples was lower (P < 0.05) during CHO [192.5 +/- 26.3 mmol glucosyl units (kg x DM(-1))] than CON [245.3 +/- 22.9 mmol glucosyl units (kg x DM(-1))]. Single fiber analysis on the biopsy samples of the subjects during the CON trial showed a greater glycogen utilization in the Type II fibers compared with Type I fibers during this type of exercise [Type I: 182.2 +/- 34.5 vs Type II: 287.4 +/- 41.2 mmol glucosyl units (kg x DM(-1)); P < 0.05). After 30 min of exercise, blood lactate was significantly greater (P < 0.05) and serum insulin concentration lower (P < 0.05) in CON. CONCLUSIONS In summary, when trained games players ingested a carbohydrate-electrolyte beverage, muscle glycogen utilization was reduced by 22% when compared with a control condition.


The Journal of Clinical Endocrinology and Metabolism | 2009

Circulating Fibroblast Growth Factor 21 Is Induced by Peroxisome Proliferator-Activated Receptor Agonists But Not Ketosis in Man

Constantinos Christodoulides; Pamela Dyson; Dennis L. Sprecher; Kostas Tsintzas; Fredrik Karpe

CONTEXT Murine fibroblast growth factor (FGF) 21 is a nutritionally regulated hormone secreted by the liver principally in response to peroxisome proliferator-activated receptor-alpha (PPAR alpha) activation, which plays a critical role in regulating metabolism during ketosis. FGF21 is also a PPAR gamma target gene in mouse adipose tissue. Little information is available on FGF21 functions in humans. OBJECTIVE The aim of the study was to measure plasma FGF21 during fasting, ketogenic diet, and PPAR agonist treatment in humans. DESIGN AND SETTING We conducted a prospective study involving three patient groups at two university hospitals. PATIENTS Eight healthy male volunteers underwent a 48-h period of starvation followed by 24-h refeeding (group 1); seven obese individuals were allocated to a low-carbohydrate diet for 3 months (group 2); and three groups of healthy, overweight or obese male volunteers received treatment with a PPAR alpha (20 microg/d GW590735) (n=6), PPAR delta (10 mg/d GW501516) (n=6), or PPAR gamma agonist (rosiglitazone) (n=10) for 2 wk (group 3). MAIN OUTCOME MEASURES Fasting plasma FGF21 and serum 3-hydroxybutyrate were measured. RESULTS There was no significant variation in human plasma FGF21 during fasting and refeeding. A 3-month ketogenic diet was associated with a 42% decline in plasma FGF21 levels. Circulating FGF21 increased significantly in response to treatment with PPAR alpha (39%) and PPAR delta (32%), but not PPAR gamma agonists. CONCLUSION FGF21 does not play a major role in regulating the fasting response or ketosis in man. However, plasma FGF21 is elevated in response to pharmacological activation of PPAR alpha and PPAR delta and may contribute to the beneficial metabolic effects observed in response to pharmacotherapy with these compounds.


The American Journal of Clinical Nutrition | 2014

The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults

James A. Betts; Judith D. Richardson; Enhad Chowdhury; Geoffrey D. Holman; Kostas Tsintzas; Dylan Thompson

Background: The causal nature of associations between breakfast and health remain unclear in obese individuals. Objective: We sought to conduct a randomized controlled trial to examine causal links between breakfast habits and components of energy balance in free-living obese humans. Design: The Bath Breakfast Project is a randomized controlled trial with repeated measures at baseline and follow-up among a cohort in South West England aged 21–60 y with dual-energy X-ray absorptiometry–derived fat mass indexes of ≥13 kg/m2 for women (n = 15) and ≥9 kg/m2 for men (n = 8). Components of energy balance (resting metabolic rate, physical activity thermogenesis, diet-induced thermogenesis, and energy intake) were measured under free-living conditions with random allocation to daily breakfast (≥700 kcal before 1100) or extended fasting (0 kcal until 1200) for 6 wk, with baseline and follow-up measures of health markers (e.g., hematology/adipose biopsies). Results: Breakfast resulted in greater physical activity thermogenesis during the morning than when fasting during that period (difference: 188 kcal/d; 95% CI: 40, 335) but without any consistent effect on 24-h physical activity thermogenesis (difference: 272 kcal/d; 95% CI: −254, 798). Energy intake was not significantly greater with breakfast than fasting (difference: 338 kcal/d; 95% CI: −313, 988). Body mass increased across both groups over time but with no treatment effects on body composition or any change in resting metabolic rate (stable within 8 kcal/d). Metabolic/cardiovascular health also did not respond to treatments, except for a reduced insulinemic response to an oral-glucose-tolerance test over time with daily breakfast relative to an increase with daily fasting (P = 0.05). Conclusions: In obese adults, daily breakfast leads to greater physical activity during the morning, whereas morning fasting results in partial dietary compensation (i.e., greater energy intake) later in the day. There were no differences between groups in weight change and most health outcomes, but insulin sensitivity increased with breakfast relative to fasting. This trial was registered at www.isrctn.org as ISRCTN31521726.


The Journal of Physiology | 2007

PPARδ agonism induces a change in fuel metabolism and activation of an atrophy programme, but does not impair mitochondrial function in rat skeletal muscle

Despina Constantin; Dumitru Constantin-Teodosiu; Robert Layfield; Kostas Tsintzas; Andrew J. Bennett; Paul L. Greenhaff

PPARα agonism impairs mitochondrial function, but the effect of PPARδ agonism on mitochondrial function is equivocal. Furthermore, PPARα and δ agonism increases muscle fatty acid oxidation, potentially via activation of FOXO1 signalling and PDK4 transcription. Since FOXO1 activation has also been suggested to increase transcription of MAFbx and MuRF‐1, and thereby the activation of ubiquitin–proteasome mediated muscle proteolysis, this raises the possibility that muscle fuel selection and the induction of a muscle atrophy programme could be regulated by a single common signalling pathway. We therefore investigated the effect of PPARδ (delta) agonist, GW610742, administration on muscle mitochondrial function, fuel regulation, and atrophy and growth related signalling pathways in vivo. Twenty‐four male Wistar rats received vehicle or GW610742 (5 and 100 mg per kg body mass (bm)) orally for 6 days. Soleus muscle was used to determine maximal rates of ATP production (MRATP) in isolated mitochondria, gene and protein expression, and enzyme activities. MRATP were unchanged by GW610742.  Muscle PDK2 and PDK4 mRNA expression increased with GW610742 (100 mg (kg bm)−1) compared to vehicle (P < 0.05), and was paralleled by a twofold increase in PDK4 protein expression (P < 0.05). The activity of β‐hydroxyacyl‐CoA dehydrogenase increased with GW610742 (P < 0.05). Muscle MuRF1 and MAFbx mRNA expression was increased by GW610742 (100 mg (kg bm)−1) compared to vehicle (P < 0.05), and was matched by increased protein expression (P < 0.001), whilst Akt1 protein declined (P < 0.05). There was no effect of GW610742 on 20S proteasome activity and mRNA expression, or the muscle DNA: protein ratio. GW610742 switched muscle fuel metabolism towards decreased carbohydrate use and enhanced lipid utilization, but did not induce mitochondrial dysfunction. Furthermore, GW610742 initiated a muscle atrophy programme, possibly via changes in the Akt1/FOXO/MAFbx and MuRF1 signalling pathway.


Diabetes | 2015

Lipid induced insulin resistance is associated with an impaired skeletal muscle protein synthetic response to amino acid ingestion in healthy young men

Francis B. Stephens; Carolyn Chee; Benjamin T. Wall; Andrew J. Murton; Chris E. Shannon; Luc J. C. van Loon; Kostas Tsintzas

The ability to maintain skeletal muscle mass appears to be impaired in insulin-resistant conditions, such as type 2 diabetes, that are characterized by muscle lipid accumulation. The current study investigated the effect of acutely increasing lipid availability on muscle protein synthesis. Seven healthy young male volunteers underwent a 7-h intravenous infusion of l-[ring-2H5]phenylalanine on two randomized occasions combined with 0.9% saline or 10% Intralipid at 100 mL/h. After a 4-h “basal” period, a 21-g bolus of amino acids was administered and a 3-h hyperinsulinemic-euglycemic clamp was commenced (“fed” period). Muscle biopsy specimens were obtained from the vastus lateralis at 1.5, 4, and 7 h. Lipid infusion reduced fed whole-body glucose disposal by 20%. Furthermore, whereas the mixed muscle fractional synthetic rate increased from the basal to the fed period during saline infusion by 2.2-fold, no change occurred during lipid infusion, despite similar circulating insulin and leucine concentrations. This “anabolic resistance” to insulin and amino acids with lipid infusion was associated with a complete suppression of muscle 4E-BP1 phosphorylation. We propose that increased muscle lipid availability may contribute to anabolic resistance in insulin-resistant conditions by impairing translation initiation.


Medicine and Science in Sports and Exercise | 2008

Increased carbohydrate oxidation after ingesting carbohydrate with added protein.

James A. Betts; Clyde Williams; Les Boobis; Kostas Tsintzas

PURPOSE To examine the metabolic impact of including protein in a postexercise carbohydrate supplement when ingested between two bouts of prolonged running performed within the same day. METHODS Six healthy men participated in two trials separated by 14 d, each involving a 90-min treadmill run at 70% VO2max followed by 4 h of recovery and a subsequent 60-min run at the same intensity. At 30-min intervals during recovery, participants ingested either a solution containing 0.8 g.kg(-1)h(-1) of carbohydrate (CHO) or the same solution plus an additional 0.3 g.kg(-1)h(-1) of whey protein isolate (CHO-PRO). Muscle biopsies were obtained from the vastus lateralis at the beginning and end of the recovery period, with a third muscle biopsy taken following the second treadmill run. RESULTS Despite higher insulinemic responses to the CHO-PRO solution than to the CHO solution (P < 0.05), rates of muscle glycogen resynthesis during recovery were not different between treatments (CHO = 12.3 +/- 2.2 and CHO-PRO = 12.1 +/- 2.7 mmol glucosyl units per kilogram of dry mass per hour). Furthermore, there were no differences between treatments in muscle glycogen degradation during subsequent exercise (CHO = 2.2 +/- 0.3 and CHO-PRO = 2.0 +/- 0.1 mmol glucosyl units per kilogram of dry mass per minute). In contrast, whole-body carbohydrate oxidation during the second run was significantly greater with the CHO-PRO treatment than with the CHO treatment (48.4 +/- 2.2 and 41.7 +/- 2.6 mg.kg(-1)min(-1), respectively; P < 0.01). CONCLUSION These data show that the inclusion of protein in a carbohydrate-recovery supplement can increase the oxidation of extramuscular carbohydrate sources during subsequent exercise without altering the rate of muscle glycogen degradation.


British Journal of Nutrition | 2015

Carbohydrate-rich breakfast attenuates glycaemic, insulinaemic and ghrelin response to ad libitum lunch relative to morning fasting in lean adults

Enhad Chowdhury; Judith D. Richardson; Kostas Tsintzas; Dylan Thompson; James A. Betts

Breakfast omission is associated with obesity and CVD/diabetes, but the acute effects of extended morning fasting upon subsequent energy intake and metabolic/hormonal responses have received less attention. In a randomised cross-over design, thirty-five lean men (n 14) and women (n 21) extended their overnight fast or ingested a typical carbohydrate-rich breakfast in quantities relative to RMR (i.e. 1963 (sd 238) kJ), before an ad libitum lunch 3 h later. Blood samples were obtained hourly throughout the day until 3 h post-lunch, with subjective appetite measures assessed. Lunch intake was greater following extended fasting (640 (sd 1042) kJ, P< 0·01) but incompletely compensated for the omitted breakfast, with total intake lower than the breakfast trial (3887 (sd 1326) v. 5213 (sd 1590) kJ, P< 0·001). Systemic concentrations of peptide tyrosine–tyrosine and leptin were greater during the afternoon following breakfast (both P< 0·05) but neither acylated/total ghrelin concentrations were suppressed by the ad libitum lunch in the breakfast trial, remaining greater than the morning fasting trial throughout the afternoon (all P< 0·05). Insulin concentrations were greater during the afternoon in the morning fasting trial (all P< 0·01). There were no differences between trials in subjective appetite during the afternoon. In conclusion, morning fasting caused incomplete energy compensation at an ad libitum lunch. Breakfast increased some anorectic hormones during the afternoon but paradoxically abolished ghrelin suppression by the second meal. Extending morning fasting until lunch altered subsequent metabolic and hormonal responses but without greater appetite during the afternoon. The present study clarifies the impact of acute breakfast omission and adds novel insights into second-meal metabolism.


The Journal of Physiology | 2001

Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man : effect of carbohydrate ingestion

Kostas Tsintzas; Clyde Williams; Dumitru Constantin-Teodosiu; Eric Hultman; Leslie Boobis; Peter Clarys; Paul L. Greenhaff

1 The aim of this study was to examine the effect of carbohydrate (CHO) ingestion on changes in ATP and phosphocreatine (PCr) concentrations in different muscle fibre types during prolonged running and relate those changes to the degree of glycogen depletion. 2 Five male subjects performed two runs at 70 % maximum oxygen uptake (V̇O2,max), 1 week apart. Each subject ingested 8 ml (kg body mass (BM))−1 of either a placebo (Con trial) or a 5.5 % CHO solution (CHO trial) immediately before each run and 2 ml (kg BM)−1 every 20 min thereafter. In the Con trial, the subjects ran to exhaustion (97.0 ± 6.7 min). In the CHO trial, the run was terminated at the time coinciding with exhaustion in the Con trial. Muscle samples were obtained from the vastus lateralis before and after each trial. 3 Carbohydrate ingestion did not affect ATP concentrations. However, it attenuated the decline in PCr concentration by 46 % in type I fibres (CHO: 20 ± 8 mmol (kg dry matter (DM))−1; Con: 34 ± 6 mmol (kg DM)−1; P < 0.05) and by 36 % in type II fibres (CHO: 30 ± 5 mmol (kg DM)−1; Con: 48 ± 6 mmol (kg DM)−1; P < 0.05). 4 A 56 % reduction in glycogen utilisation in type I fibres was observed in CHO compared with Con (117 ± 39 vs. 240 ± 32 mmol glucosyl units (kg DM)−1, respectively; P < 0.01), but no difference was observed in type II fibres. 5 It is proposed that CHO ingestion during exhaustive running attenuates the decline in oxidative ATP resynthesis in type I fibres, as indicated by sparing of both PCr and glycogen breakdown. The CHO‐induced sparing of PCr, but not glycogen, in type II fibres may reflect differential recruitment and/or role of PCr between fibre types.


Journal of Neuroendocrinology | 2013

Increased Responses to the Actions of Fibroblast Growth Factor 21 on Energy Balance and Body Weight in a Seasonal Model of Adiposity

Michelle Murphy; Ricardo J. Samms; Amy Warner; Matei Bolborea; Perry Barrett; Maxine J Fowler; John M. Brameld; Kostas Tsintzas; Alexei Kharitonenkov; Andrew C. Adams; Tamer Coskun; Francis J. P. Ebling

The present study aimed to investigate the actions of fibroblast growth factor 21 (FGF21) on energy balance in a natural model of relative fatness, the Siberian hamster. Hamsters were studied under long days (LD) to promote weight gain, or short days to induce weight loss, and treated with rhFGF21 (3 mg/kg/day) via s.c. minipumps for 14 days. On days 7–9, detailed assessments of ingestive behaviour, metabolic gas exchange and locomotor activity were made. FGF21 caused substantial (P < 0.0001) weight loss in the fat LD state but not in the lean SD state: at the end of the study, FGF21‐treated hamsters in LD lost 18% of body weight compared to vehicle controls, which is comparable to the natural body weight loss observed in SD. Epididymal fat pads, a correlate of total carcass fat content, were reduced by 19% in FGF21 treated hamsters in LD, whereas no difference was found in SD. Body weight loss in LD was associated with a reduction in food intake (P < 0.001) and a decreased respiratory exchange ratio (P < 0.001), indicating increased fat oxidation. Treatment with FGF21 maintained the normal nocturnal increase in oxygen consumption and carbon dioxide production into the early light phase in hamsters in LD, indicating increased energy expenditure, although locomotor activity was unaffected. These data suggest a greater efficacy of FGF21 in hamsters in LD compared to those in SD, which is consistent with both the peripheral and possibly central actions of FGF21 with respect to promoting a lean phenotype. The observed differences in FGF21 sensitivity may relate to day length‐induced changes in adipose tissue mass.

Collaboration


Dive into the Kostas Tsintzas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Cooper

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge