Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kosuke Maki is active.

Publication


Featured researches published by Kosuke Maki.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Ultrafast folding of α3D: A de novo designed three-helix bundle protein

Yongjin Zhu; Darwin O. V. Alonso; Kosuke Maki; Cheng-Yen Huang; Steven J. Lahr; Valerie Daggett; Heinrich Roder; William F. DeGrado; Feng Gai

Here, we describe the folding/unfolding kinetics of α3D, a small designed three-helix bundle. Both IR temperature jump and ultrafast fluorescence mixing methods reveal a single-exponential process consistent with a minimal folding time of 3.2 ± 1.2 μs (at ≈50°C), indicating that a protein can fold on the 1- to 5-μs time scale. Furthermore, the single-exponential nature of the relaxation indicates that the prefactor for transition state (TS)-folding models is probably ≥1 (μs)–1 for a protein of this size and topology. Molecular dynamics simulations and IR spectroscopy provide a molecular rationale for the rapid, single-exponential folding of this protein. α3D shows a significant bias toward local helical structure in the thermally denatured state. The molecular dynamics-simulated TS ensemble is highly heterogeneous and dynamic, allowing access to the TS via multiple pathways.


Biochemistry | 2004

Acid Denaturation and Refolding of Green Fluorescent Protein

Sawako Enoki; Kimiko Saeki; Kosuke Maki; Kunihiro Kuwajima

Green fluorescent protein from the jellyfish Aequorea victoria can serve as a good model protein to understand protein folding in a complex environment with molecular chaperones and other macromolecules such as those in biological cells, but little is known about the detailed mechanisms of the in vitro folding of green fluorescent protein itself. We therefore investigated the kinetic refolding of a mutant (F99S/M153T/V163A) of green fluorescent protein, which is known to mature more efficiently than the wild-type protein, from the acid-denatured state; refolding was observed by chromophore fluorescence, tryptophan fluorescence, and far-UV CD, using a stopped-flow technique. In this study, we demonstrated that the kinetics of the refolding of the mutant have at least five kinetic phases and involve nonspecific collapse within the dead time of a stopped-flow apparatus and the subsequent formation of an on-pathway intermediate with the characteristics of the molten globule state. We also demonstrated that the slowest phase and a major portion of the second slowest phase were rate-limited by slow prolyl isomerization in the intermediate state, and this rate limitation accounts for a major portion of the observed kinetics in the folding of green fluorescent protein.


Journal of Molecular Biology | 2002

Fast Compaction of α-Lactalbumin During Folding Studied by Stopped-flow X-ray Scattering

Munehito Arai; Kazuki Ito; Tomonao Inobe; Masaharu Nakao; Kosuke Maki; Kiyoto Kamagata; Hiroshi Kihara; Yoshiyuki Amemiya; Kunihiro Kuwajima

To monitor the fast compaction process during protein folding, we have used a stopped-flow small-angle X-ray scattering technique combined with a two-dimensional charge-coupled device-based X-ray detector that makes it possible to improve the signal-to-noise ratio of data dramatically, and measured the kinetic refolding reaction of α-lactalbumin. The results clearly show that the radius of gyration and the overall shape of the kinetic folding intermediate of α-lactalbumin are the same as those of the molten globule state observed at equilibrium. Thus, the identity between the kinetic folding intermediate and the equilibrium molten globule state is firmly established. The present results also suggest that the folding intermediate is more hydrated than the native state and that the hydrated water molecules are dehydrated when specific side-chain packing is formed during the change from the molten globule to the native state.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Early kinetic intermediate in the folding of acyl-CoA binding protein detected by fluorescence labeling and ultrarapid mixing

Kaare Teilum; Kosuke Maki; Flemming M. Poulsen; Heinrich Roder

Early conformational events during folding of acyl-CoA binding protein (ACBP), an 86-residue α-helical protein, were explored by using a continuous-flow mixing apparatus with a dead time of 70 μs to measure changes in intrinsic tryptophan fluorescence and tryptophan-dansyl fluorescence energy transfer. Although the folding of ACBP was initially described as a concerted two-state process, the tryptophan fluorescence measurements revealed a previously unresolved phase with a time constant τ = 80 μs, indicating formation of an intermediate with only slightly enhanced florescence of Trp-55 and Trp-58 relative to the unfolded state. To amplify this phase, a dansyl fluorophore was introduced at the C terminus by labeling an I86C mutant of ACBP with 5-IAEDANS [5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid]. Continuous-flow refolding of guanidine HCl-denatured ACBP showed a major increase in tryptophan-dansyl fluorescence energy transfer, indicating formation of a partially collapsed ensemble of states on the 100-μs time scale. A subsequent decrease in dansyl fluorescence is attributed to intramolecular quenching of donor fluorescence on formation of the native state. The kinetic data are fully accounted for by three-state mechanisms with either on- or off-pathway intermediates. The intermediate accumulates to a maximum population of 40%, and its stability depends only weakly on denaturant concentration, which is consistent with a marginally stable ensemble of partially collapsed states with ∼1/3 of the solvent-accessible surface buried. The findings indicate that ultrafast mixing methods combined with sensitive conformational probes can reveal transient accumulation of intermediate states in proteins with apparent two-state folding mechanisms.


Biochemistry | 1999

Effects of Proline Mutations on the Folding of Staphylococcal Nuclease

Kosuke Maki; Teikichi Ikura; Toshiya Hayano; Nobuhiro Takahashi; Kunihiro Kuwajima

Effects of proline isomerizations on the equilibrium unfolding and kinetic refolding of staphylococcal nuclease were studied by circular dichroism in the peptide region (225 nm) and fluorescence spectra of a tryptophan residue. For this purpose, four single mutants (P11A, P31A, P42A, and P56A) and four multiple mutants (P11A/P47T/P117G, P11A/P31A/P47T/P117G, P11A/P31A/P42A/P47T/P117G, and P11A/P31A/P42A/P47T/P56A/P117G) were constructed. These mutants, together with the single and double mutants for Pro47 and Pro117 constructed in our previous study, cover all six proline sites of the nuclease. The P11A, P31A, and P42A mutations did not change the stability of the protein remarkably, while the P56A mutation increased protein stability to a small extent by 0.5 kcal/mol. The refolding kinetics of the protein were, however, affected remarkably by three of the mutations, namely, P11A, P31A, and P56A. Most notably, the amplitude of the slow phase of the triphasic refolding kinetics of the nuclease observed by stopped-flow circular dichroism decreased by increasing the number of the proline mutations; the slow phase disappeared completely in the proline-free mutant (P11A/P31A/P42A/P47T/P56A/P117G). The kinetic refolding reactions of the wild-type protein assessed in the presence of Escherichia coli cyclophilin A showed that the slow phase was accelerated by cyclophilin, indicating that the slow phase was rate-limited by cis-trans isomerization of the proline residues. Although the fast and middle phases of the refolding kinetics were not affected by cyclophilin, the amplitude of the middle phase decreased when the number of the proline mutations increased; the percent amplitudes for the wild-type protein and the proline-free mutants were 43 and 13%, respectively. In addition to these three phases detected with stopped-flow circular dichroism, a very fast phase of refolding was observed with stopped-flow fluorescence, which had a shorter dead time (3.6 ms) than the stopped-flow circular dichroism. The following conclusions were drawn. (1) The effects of the P11A, P31A, and P56A mutations on the refolding kinetics indicate that the isomerizations of the three proline residues are rate-limiting, suggesting that the structures around these residues (Pro11, Pro31, and Pro56) may be organized at an early stage of refolding. (2) The fast phase corresponds to the refolding of the native proline isomer, and the middle phase whose amplitude has decreased when the number of proline mutations was increased may correspond to the slow refolding of non-native proline isomers. The occurrence of the fast- and slow-refolding reactions together with the slow phase rate-limited by the proline isomerization suggests that there are parallel folding pathways for the native and non-native proline isomers. (3) The middle phase did not completely disappear in the proline-free mutant. This suggests that the slow-folding isomer is produced not only by the proline isomerizations but also by another conformational event that is not related to the prolines. (4) The very fast phase detected with the fluorescent measurements suggests that there is an intermediate at a very early stage of kinetic refolding.


Journal of Biological Chemistry | 2005

Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: Implications that group II chaperonins operate as a "two-stroke engine"

Ryo Iizuka; Takao Yoshida; Noriyuki Ishii; Tamotsu Zako; Kazunobu Takahashi; Kosuke Maki; Tomonao Inobe; Kunihiro Kuwajima; Masafumi Yohda

Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lids conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on α-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that α-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that α-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced α-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, α-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.


Journal of Molecular Biology | 2008

Folding mechanism of reduced cytochrome c: Equilibrium and kinetic properties in the presence of carbon monoxide

Ramil F. Latypov; Kosuke Maki; Hong Cheng; Stanley D. Luck; Heinrich Roder

Despite close structural similarity, the ferric and ferrous forms of cytochrome c differ greatly in terms of their ligand binding properties, stability, folding, and dynamics. The reduced heme iron binds diatomic ligands such as CO only under destabilizing conditions that promote weakening or disruption of native methionine-iron linkage. This makes CO a useful conformational probe for detecting partially structured states that cannot be observed in the absence of endogenous ligands. Heme absorbance, circular dichroism, and NMR were used to characterize the denaturant-induced unfolding equilibrium of ferrocytochrome c in the presence and in the absence of CO. In addition to the native state (N), which does not bind CO, and the unfolded CO complex (U-CO), a structurally distinct CO-bound form (M-CO) accumulates to high levels (approximately 75% of the population) at intermediate guanidine HCl concentrations. Comparison of the unfolding transitions for different conformational probes reveals that M-CO is a compact state containing a native-like helical core and regions of local disorder in the segment containing the native Met80 ligand and adjacent loops. Kinetic measurements of CO binding and dissociation under native, partially denaturing, and fully unfolded conditions indicate that a state M that is structurally analogous to M-CO is populated even in the absence of CO. The binding energy of the CO ligand lowers the free energy of this high-energy state to such an extent that it accumulates even under mildly denaturing equilibrium conditions. The thermodynamic and kinetic parameters obtained in this study provide a fully self-consistent description of the linked unfolding/CO binding equilibria of reduced cytochrome c.


Journal of Biological Chemistry | 2008

Sequential action of ATP-dependent subunit conformational change and interaction between helical protrusions in the closure of the built-in lid of group II chaperonins

Taro Kanzaki; Ryo Iizuka; Kazunobu Takahashi; Kosuke Maki; Rie Masuda; Muhamad Sahlan; Hugo Yébenes; José M. Valpuesta; Toshihiko Oka; Masahiro Furutani; Noriyuki Ishii; Kunihiro Kuwajima; Masafumi Yohda

ATP drives the conformational change of the group II chaperonin from the open lid substrate-binding conformation to the closed lid conformation to encapsulate an unfolded protein in the central cavity. The detailed mechanism of this conformational change remains unknown. To elucidate the intra-ring cooperative action of subunits for the conformational change, we constructed Thermococcus chaperonin complexes containing mutant subunits in an ordered manner and examined their folding and conformational change abilities. Chaperonin complexes containing wild-type subunits and mutant subunits with impaired ATP-dependent conformational change ability or ATP hydrolysis activity, one by one, exhibited high protein refolding ability. The effects of the mutant subunits correlate with the number and order in the ring. In contrast, the use of a mutant lacking helical protrusion severely affected the function. Interestingly, these mutant chaperonin complexes also exhibited ATP-dependent conformational changes as demonstrated by small angle x-ray scattering, protease digestion, and changes in fluorescence of the fluorophore attached to the tip of the helical protrusion. However, their conformational change is likely to be transient. They captured denatured proteins even in the presence of ATP, whereas addition of ATP impaired the ability of the wild-type chaperonin to protect citrate synthase from thermal aggregation. These results suggest that ATP binding/hydrolysis causes the independent conformational change of the subunit, and further conformational change for the complete closure of the lid is induced and stabilized by the interaction between helical protrusions.


Journal of Biological Chemistry | 2006

Evolutional Design of a Hyperactive Cysteine- and Methionine-free Mutant of Escherichia coli Dihydrofolate Reductase

Masahiro Iwakura; Kosuke Maki; Hisashi Takahashi; Tatsuyuki Takenawa; Akiko Yokota; Katsuo Katayanagi; Tadashi Kamiyama; Kunihiko Gekko

We developed a strategy for finding out the adapted variants of enzymes, and we applied it to an enzyme, dihydrofolate reductase (DHFR), in terms of its catalytic activity so that we successfully obtained several hyperactive cysteine- and methionine-free variants of DHFR in which all five methionyl and two cysteinyl residues were replaced by other amino acid residues. Among them, a variant (M1A/M16N/M20L/M42Y/C85A/M92F/C152S), named as ANLYF, has an approximately seven times higher kcat value than wild type DHFR. Enzyme kinetics and crystal structures of the variant were investigated for elucidating the mechanism of the hyperactivity. Steady-state and transient binding kinetics of the variant indicated that the kinetic scheme of the catalytic cycle of ANLYF was essentially the same as that of wild type, showing that the hyperactivity was brought about by an increase of the dissociation rate constants of tetrahydrofolate from the enzyme-NADPH-tetrahydrofolate ternary complex. The crystal structure of the variant, solved and refined to an R factor of 0.205 at 1.9-Å resolution, indicated that an increased structural flexibility of the variant and an increased size of the N-(p-aminobenzoyl)-l-glutamate binding cleft induced the increase of the dissociation constant. This was consistent with a large compressibility (volume fluctuation) of the variant. A comparison of folding kinetics between wild type and the variant showed that the folding of these two enzymes was similar to each other, suggesting that the activity enhancement of the enzyme can be attained without drastic changes of the folding mechanism.


Protein Science | 2003

Denaturation and reassembly of chaperonin GroEL studied by solution X-ray scattering.

Munehito Arai; Tomonao Inobe; Kosuke Maki; Teikichi Ikura; Hiroshi Kihara; Yoshiyuki Amemiya; Kunihiro Kuwajima

We measured the denaturation and reassembly of Escherichia coli chaperonin GroEL using small‐angle solution X‐ray scattering, which is a powerful technique for studying the overall structure and assembly of a protein in solution. The results of the urea‐induced unfolding transition show that GroEL partially dissociates in the presence of more than 2 M urea, cooperatively unfolds at around 3 M urea, and is in a monomeric random coil‐like unfolded structure at more than 3.2 M urea. Attempted refolding of the unfolded GroEL monomer by a simple dilution procedure is not successful, leading to formation of aggregates. However, the presence of ammonium sulfate and MgADP allows the fully unfolded GroEL to refold into a structure with the same hydrodynamic dimension, within experimental error, as that of the native GroEL. Moreover, the X‐ray scattering profiles of the GroEL thus refolded and the native GroEL are coincident with each other, showing that the refolded GroEL has the same structure and the molecular mass as the native GroEL. These results demonstrate that the fully unfolded GroEL monomer can refold and reassemble into the native tetradecameric structure in the presence of ammonium sulfate and MgADP without ATP hydrolysis and preexisting chaperones. Therefore, GroEL can, in principle, fold and assemble into the native structure according to the intrinsic characteristic of its polypeptide chain, although preexisting GroEL would be important when the GroEL folding takes place under in vivo conditions, in order to avoid misfolding and aggregation.

Collaboration


Dive into the Kosuke Maki's collaboration.

Top Co-Authors

Avatar

Kunihiro Kuwajima

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Cheng

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Nakamura

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Kihara

Kansai Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge