Kota Kato
Astellas Pharma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kota Kato.
Clinical pharmacology in drug development | 2017
Andreas H. Groll; Amit Desai; David Han; Corrie Howieson; Kota Kato; Shahzad Akhtar; Donna Kowalski; Christopher Lademacher; William Lewis; Helene Pearlman; Debra Mandarino; Takao Yamazaki; Robert Townsend
This report summarizes phase 1 studies that evaluated pharmacokinetic interactions between the novel triazole antifungal agent isavuconazole and the immunosuppressants cyclosporine, mycophenolic acid, prednisolone, sirolimus, and tacrolimus in healthy adults. Healthy subjects received single oral doses of cyclosporine (300 mg; n = 24), mycophenolate mofetil (1000 mg; n = 24), prednisone (20 mg; n = 21), sirolimus (2 mg; n = 22), and tacrolimus (5 mg; n = 24) in the presence and absence of clinical doses of oral isavuconazole (200 mg 3 times daily for 2 days; 200 mg once daily thereafter). Coadministration with isavuconazole increased the area under the concentration‐time curves (AUC0–∞) of tacrolimus, sirolimus, and cyclosporine by 125%, 84%, and 29%, respectively, and the AUCs of mycophenolic acid and prednisolone by 35% and 8%, respectively. Maximum concentrations (Cmax) of tacrolimus, sirolimus, and cyclosporine were 42%, 65%, and 6% higher, respectively; Cmax of mycophenolic acid and prednisolone were 11% and 4% lower, respectively. Isavuconazole pharmacokinetics were mostly unaffected by the immunosuppressants. Two subjects experienced elevated creatinine levels in the cyclosporine study; most adverse events were not considered to be of clinical concern. These results indicate that isavuconazole is an inhibitor of cyclosporine, mycophenolic acid, sirolimus, and tacrolimus metabolism.
Antimicrobial Agents and Chemotherapy | 2013
Kiyomitsu Katsumata; Koji Chono; Kota Kato; Yoshiaki Ohtsu; Shoji Takakura; Toru Kontani; Hiroshi Suzuki
ABSTRACT ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus 1 (HSV-1), HSV-2, and varicella zoster virus. Here, to determine and analyze the correlation between the pharmacodynamic (PD) and pharmacokinetic (PK) parameters of ASP2151, we examined the PD profile of ASP2151 using in vitro plaque reduction assay and a murine model of HSV-1 infection. ASP2151 inhibited the in vitro replication of HSV-1 with a mean 50% effective concentration (EC50) of 14 ng/ml. In the cutaneously HSV-1-infected mouse model, ASP2151 dose dependently suppressed intradermal HSV-1 growth, with the effect reaching a plateau at a dose of 30 mg/kg of body weight/day. The dose fractionation study showed that intradermal HSV-1 titers were below the detection limit in mice treated with ASP2151 at 100 mg/kg/day divided into two daily doses and at 30 or 100 mg/kg/day divided into three daily doses. The intradermal HSV-1 titer correlated with the maximum concentration of drug in serum (Cmax), the area under the concentration-time curve over 24 h (AUC24h), and the time during which the concentration of ASP2151 in plasma was above 100 ng/ml (T>100). The continuous infusion of ASP2151 effectively decreased intradermal HSV-1 titers below the limit of detection in mice in which the ASP2151 concentration in plasma reached 79 to 145 ng/ml. Our findings suggest that the antiviral efficacy of ASP2151 is most closely associated with the PK parameter T>100 in HSV-1-infected mice. Based on these results, we propose that a plasma ASP2151 concentration exceeding 100 ng/ml for 21 to 24 h per day provides the maximum efficacy in HSV-1-infected mice.
Drug Metabolism and Disposition | 2015
Kota Kato; Masato Ohbuchi; Satoko Hamamura; Hiroki Ohshita; Yasuhiro Kazuki; Mitsuo Oshimura; Koya Sato; Naoyuki Nakada; Akio Kawamura; Takashi Usui; Hidetaka Kamimura; Chise Tateno
We developed murine Cyp3a knockout (KO) chimeric mice with humanized liver expressing human P450s similar to those in humans and whose livers and small intestines do not express murine Cyp3a. This approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time–polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice.
Biopharmaceutics & Drug Disposition | 2016
Naoyuki Nakada; Akio Kawamura; Hidetaka Kamimura; Koya Sato; Yasuhiro Kazuki; Masakazu Kakuni; Masato Ohbuchi; Kota Kato; Chise Tateno; Mitsuo Oshimura; Takashi Usui
Chimeric mice with humanized livers (PXB mice) are used to investigate the metabolism and pharmacokinetics of drugs in humans. However, residual murine enzymatic activities derived from the liver and the presence of mouse small intestinal metabolism can hamper the prediction of human drug metabolism. Recently murine Cytochrome P450 3a gene knockout chimeric mice with humanized livers (Cyp3a KO CM) were developed. To evaluate the prediction of drug metabolism, nefazodone (NEF) was administered orally at 10 mg/kg to the following mouse strains: Cyp3a KO CM, murine Cyp3a gene knockout (Cyp3a KO), PXB and severe combined immunodeficiency (SCID) mice. Liquid chromatography‐mass spectrometry was used for metabolic profiling of plasma, urine and bile. The prediction of human metabolite levels such as hydroxy nefazodone (OH‐NEF), triazoledione form (TD), m‐chlorophenylpiperazine and dealkyl metabolites in Cyp3a KO CM was superior to that in Cyp3a KO, PXB or SCID mice. Further, clinical exposure levels of NEF, OH‐NEF and TD were reproduced in Cyp3a KO CM. In contrast, NEF was rapidly metabolized to TD in both PXB and SCID mice but not in Cyp3a KO mice, suggesting that murine CYP3A is involved in the elimination of NEF in these mice. These findings demonstrate that the metabolic profile of NEF in Cyp3a KO CM differs qualitatively and quantitatively from that in PXB mice due to the higher metabolic rate of NEF and its metabolites via murine CYP3A. Therefore Cyp3a KO CM might be useful in predicting the metabolic profiles of drug candidates in humans. Copyright
Clinical pharmacology in drug development | 2017
Takao Yamazaki; Amit Desai; David Han; Kota Kato; Donna Kowalski; Shahzad Akhtar; Christopher Lademacher; Laura L. Kovanda; Robert Townsend
This phase 1, open‐label study evaluated the pharmacokinetic effects of coadministration of the antifungal agent, isavuconazole (administered as its water‐soluble prodrug isavuconazonium sulfate), with the antiretroviral agent lopinavir/ritonavir in healthy adults. In part 1, 13 subjects were randomized to 2 arms to receive multiple doses of oral isavuconazole 100 mg either alone or with lopinavir/ritonavir 400/100 mg. In part 2, a different group of 55 subjects were randomized to 3 arms to receive multiple doses of oral isavuconazole 200 mg, either alone or with lopinavir/ritonavir 400/100 mg, or to receive oral lopinavir/ritonavir 400/100 mg alone. Mean area under the concentration‐time curve (AUC) following the last dose (AUCτ) and Cmax of isavuconazole increased by 113% and 96% in part 1 and by 96% and 74% in part 2 in the presence vs absence of lopinavir/ritonavir, respectively. Mean AUCτ and Cmax of lopinavir were 27% and 23% lower, and mean AUCτ and Cmax of ritonavir were 31% and 33% lower in the presence vs absence of isavuconazole, respectively. Mild to moderate gastrointestinal disorders were the most common adverse events experienced. These findings indicate that coadministration of lopinavir/ritonavir with isavuconazole can decrease the exposure of lopinavir/ritonavir and increase the exposure of isavuconazole. Patients should be monitored for reduced antiviral efficacy if these agents are coadministered.
Clinical pharmacology in drug development | 2018
Robert Townsend; Kota Kato; Christine Hale; Donna Kowalski; Christopher Lademacher; Takao Yamazaki; Shahzad Akhtar; Amit Desai
Isavuconazonium sulfate is the water‐soluble prodrug of the active triazole isavuconazole. Two phase 1 studies were conducted to identify the metabolic profile and mass balance of isavuconazole and BAL8728 (inactive cleavage product). Seven subjects in study 1 (isavuconazole mass balance) received a single oral dose of [cyano‐14C]isavuconazonium sulfate corresponding to 200 mg isavuconazole. Six subjects in study 2 (BAL8728 mass balance) received a single intravenous dose of [pyridinylmethyl‐14C]isavuconazonium sulfate corresponding to 75 mg BAL8728. Pharmacokinetic parameters of radioactivity in whole blood and plasma and of isavuconazole and BAL8728 in plasma were assessed. Radioactivity ratio of blood/plasma, percentage of dose, and cumulative percentage of radioactive dose recovered in urine and feces for isavuconazole and BAL8728 were assessed. Metabolic profiling was carried out by high‐performance liquid chromatography and mass spectrometry. Mean plasma isavuconazole pharmacokinetic parameters included apparent clearance (2.3 ± 0.7 L/h), apparent volume of distribution (301.8 ± 105.7 L), and terminal elimination half‐life (99.9 ± 44.6 hours). In study 1, isavuconazole‐derived radioactivity was recovered approximately equally in urine and feces (46.1% and 45.5%, respectively). In study 2, BAL8728‐derived radioactivity was predominantly recovered in urine (96.0%). Isavuconazole (study 1) and M4 (cleavage metabolite of BAL8728; study 2) were the predominant circulating components of radioactivity in plasma.
Antimicrobial Agents and Chemotherapy | 2017
Anne-Hortense Schmitt-Hoffmann; Kota Kato; Robert Townsend; Michael J. Potchoiba; William W. Hope; David R. Andes; Jochen Spickermann; Marlowe J. Schneidkraut
ABSTRACT Quantitative whole-body autoradiography was used to assess the distribution and tissue penetration of isavuconazole in rats following single and repeated oral-dose administration of radiolabeled isavuconazonium sulfate, the prodrug of isavuconazole. Following a single-dose administration of radiolabeled isavuconazonium sulfate (labeled on the active moiety), radioactivity was detectable within 1 h postdose in 56 of 65 tissue/fluid specimens. The highest maximum concentrations (Cmax) were observed in bile and liver (66.6 and 24.7 μg eq/g, respectively). The lowest Cmax values were in bone and eye lens (0.070 and 0.077 μg eq/g, respectively). By 144 h postdose, radioactivity was undetectable in all tissues/fluids except liver (undetectable at 336 h) and adrenal gland tissues (undetectable at 672 h). Following daily administration for up to 21 days, 1-h-postdose Cmax values were the highest on or before day 14 in all except seven tissues/fluids, of which only rectum mucosa and small intestine mucosa had Cmax values >25% higher than all other 1-h-postdose values. For 24-h-postdose Cmax values, only large intestine, large intestine mucosa, and urine had the highest Cmax values at day 21. The penetration of single oral doses of unlabeled isavuconazole (25 mg/kg of body weight isavuconazonium sulfate) and voriconazole (50 mg/kg) into rat brain (assessed using liquid chromatography-tandem mass spectrometry) was also compared. Brain concentration/plasma concentration ratios reached approximately 1.8:1 and 2:1, respectively. These data suggest that isavuconazole penetrates most tissues rapidly, reaches a steady state in most or all tissues/fluids within 14 days, does not accumulate in tissues/fluids over time, and achieves potentially efficacious concentrations in the brain.
Bioorganic & Medicinal Chemistry | 2015
Hiroshi Inami; Jun-Ichi Shishikura; Tomoyuki Yasunaga; Kazushige Ohno; Hiroshi Yamashita; Kota Kato; Shuichi Sakamoto
As part of a program aimed at discovering orally active 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor antagonists, we screened our compound library and identified 2-[allyl(4-methylphenyl)amino]-4H-pyrido[3,2-e][1,3]thiazin-4-one (7) as a lead compound that inhibited kainate-induced neurotoxicity mediated by AMPA receptors in rat hippocampal cultures. Structure-activity relationship studies of a series of 2-amino-4H-pyrido[3,2-e][1,3]thiazin-4-one derivatives revealed that substituents on the phenyl ring attached to the 2-amino group and the 4H-pyrido[3,2-e][1,3]thiazin-4-one ring system play an important role in inhibitory activity against kainate-induced neurotoxicity. Several analogs bearing a phenyl group with a 4-substituent or five- or six-membered ring fused at the 3,4-positions exhibited potent inhibitory activity against kainate-induced neurotoxicity. Further, some of these compounds exhibited significant suppression of maximal electroshock seizure in mice following oral administration. Of these compounds, 2-[(4-chlorophenyl)(methyl)amino]-4H-pyrido[3,2-e][1,3]thiazin-4-one (16i) (YM928) demonstrated the most potent inhibitory effect with an ED50 value of 7.4mg/kg.
Advances in Therapy | 2017
Tomohiro Kusawake; Martin den Adel; Dorien Groenendaal-van de Meent; Alberto Garcia-Hernandez; Akitsugu Takada; Kota Kato; Yoshiaki Ohtsu; Masataka Katashima
Advances in Therapy | 2017
Tomohiro Kusawake; Donna Kowalski; Akitsugu Takada; Kota Kato; Masataka Katashima; James Keirns; Michaelene Lewand; Kenneth C. Lasseter; Thomas Marbury; Richard A. Preston