Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kotaro Ogawa is active.

Publication


Featured researches published by Kotaro Ogawa.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery and biological activity of a novel class I PI3K inhibitor, CH5132799

Jun Ohwada; Hirosato Ebiike; Hatsuo Kawada; Masao Tsukazaki; Mitsuaki Nakamura; Takuya Miyazaki; Kenji Morikami; Kiyoshi Yoshinari; Miyuki Yoshida; Osamu Kondoh; Shino Kuramoto; Kotaro Ogawa; Yuko Aoki; Nobuo Shimma

Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase and a promising therapeutic target for cancer. Using structure-based drug design (SBDD), we have identified novel PI3K inhibitors with a dihydropyrrolopyrimidine skeleton. Metabolic stability of the first lead series was drastically improved by replacing phenol with aminopyrimidine moiety. CH5132799, a novel class I PI3K inhibitor, exhibited a strong inhibitory activity especially against PI3Kα (IC(50)=0.014 μM). In human tumor cell lines with PI3K pathway activation, CH5132799 showed potent antiproliferative activity. CH5132799 is orally available and showed significant antitumor activity in PI3K pathway-activated human cancer xenograft models in mice.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis of new camptothecin analogs with improved antitumor activities

Satoshi Niizuma; Masao Tsukazaki; Hitomi Suda; Takeshi Murata; Jun Ohwada; Sawako Ozawa; Hiroshi Fukuda; Chikako Murasaki; Masami Kohchi; Kenji Morikami; Kiyoshi Yoshinari; Mika Endo; Masako Ura; Hiromi Tanimura; Yoko Miyazaki; Tsuyoshi Takasuka; Akira Kawashima; Eitaro Nanba; Kounosuke Nakano; Kotaro Ogawa; Kazuko Kobayashi; Hisafumi Okabe; Isao Imperial Higashihak Umeda; Nobuo Shimma

Novel hexacyclic camptothecin analogs containing cyclic amidine, urea, or thiourea moiety were designed and synthesized based on the proposed 3D-structure of the topoisomerase I (Topo I)/DNA/camptothecin ternary complex. The analogs were prepared from 9-nitrocamptothecin via 7,9-diaminocamptothecin derivatives as a key intermediate. Among them, 7c exhibited in vivo antitumor activities superior to CPT-11 in human cancer xenograft models in mice at their maximum tolerated doses though its in vitro antiproliferative activity was comparable to SN-38 against corresponding cell lines.


Cancer Chemotherapy and Pharmacology | 2010

A water soluble prodrug of a novel camptothecin analog is efficacious against breast cancer resistance protein-expressing tumor xenografts

Mika Endo; Masanori Miwa; Masako Ura; Hiromi Tanimura; Kenji Taniguchi; Yoko Miyazaki; Jun Ohwada; Masao Tsukazaki; Satoshi Niizuma; Takeshi Murata; Sawako Ozawa; Hitomi Suda; Kotaro Ogawa; Eitaro Nanba; Shunsuke Nagao; Nobuo Shimma; Hisafumi Yamada-Okabe

PurposeIdentification of a novel topoisomerase I inhibitor which shows superior efficacy and less individual variation than irinotecan hydrochloride (CPT-11).MethodsA novel camptothecin analog that is effective against breast cancer resistance protein (BCRP)-positive cells was screened, and a water soluble prodrug was generated. Antitumor activity of the prodrug was examined in BCRP-positive and -negative xenografts both as a single agent and in combination with other anti-cancer drugs.ResultsA novel camptothecin analog, CH0793076, was discovered. Because CH0793076 was found to be highly lipophilic, a water soluble prodrug (TP300) was generated. TP300 is stable in an acidic solution but is rapidly converted to CH0793076 under physiological pH conditions such as in sera. This efficient prodrug activation would minimize interpatient differences in pharmacokinetic and toxicity profiles. Unlike CPT-11, TP300 does not exhibit cholinergic interaction or cause acute diarrhea at effective doses. In mouse xenograft models, TP300 showed antitumor activity against both BCRP-positive and -negative xenografts, whereas CPT-11 was less active against BCRP-positive xenografts. In addition, the effective dose range (MTD/ED50) for TP300 was wider than for CPT-11 and TP300 showed additive or synergistic antitumor effects in combination with other anti-cancer drugs such as capecitabine, oxaliplatin, cisplatin, bevacizumab and cetuximab.ConclusionIt is therefore expected that TP300 will provide an additional treatment option for patients who will undergo chemotherapy with camptothecins.


Bioorganic & Medicinal Chemistry Letters | 2013

Lead optimization of a dihydropyrrolopyrimidine inhibitor against phosphoinositide 3-kinase (PI3K) to improve the phenol glucuronic acid conjugation

Hatsuo Kawada; Hirosato Ebiike; Masao Tsukazaki; Mitsuaki Nakamura; Kenji Morikami; Kiyoshi Yoshinari; Miyuki Yoshida; Kotaro Ogawa; Nobuo Shimma; Takuo Tsukuda; Jun Ohwada

Our lead compound for a phosphoinositide 3-kinase (PI3K) inhibitor (1) was metabolically unstable because of rapid glucuronidation of the phenol moiety. Based on structure-activity relationship (SAR) information and a FlexSIS docking simulation score, aminopyrimidine was identified as a bioisostere of phenol. An X-ray structure study revealed a hydrogen bonding pattern of aminopyrimidine derivatives. Finally, aminopyrimidine derivatives 33 showed strong tumor growth inhibition against a KPL-4 breast cancer xenograft model in vivo.


Xenobiotica | 2013

A new approach to predicting human hepatic clearance of CYP3A4 substrates using monkey pharmacokinetic data

Kotaro Ogawa; Motohiro Kato; Takao Houjo; Masaki Ishigai

1. Focusing on the genetic similarity of CYP3A subfamily enzymes (CYP3A4 and CYP3A5) between monkeys and humans, we have attempted to provide a single-species approach to predicting human hepatic clearance (CLh) of CYP3A4 substrates using pharmacokinetic parameters in cynomolgus monkeys following intravenous administrations. 2. Hepatic intrinsic clearance (CLint,h) of six CYP3A4 substrates (alprazolam, clonazepam, diltiazem, midazolam, nifedipine, and quinidine), covering a wide range of clearance, in monkeys correlated well with that cited in literature for humans (R = 0.90) with a simple equation of Y = 0.165X (Y: human CLint,h, X: monkey CLint,h, represented in mL/min/kg). 3. To verify the predictability of human CLint,h, monkey CLint,h of a test set of CYP3A4 substrates cited in literature (dexamethasone, nifedipine, midazolam, quinidine, tacrolimus, and verapamil) was applied to the equation and human CLint,h was calculated. The human CLint,h of all the substrates was predicted within 3-fold error (fold error: 0.35–2.77). 4. The predictability of human CLh by our method was superior to common in vivo prediction methods (allometry and liver blood flow method). These results suggest that human hepatic clearance of CYP3A4 substrates can be predicted by applying cynomolgus monkey CLint,h obtained following intravenous administrations in each laboratory to the simple equation.


Bioorganic & Medicinal Chemistry | 2012

Angiogenesis inhibitors identified by cell-based high-throughput screening: synthesis, structure-activity relationships and biological evaluation of 3-[(E)-styryl]benzamides that specifically inhibit endothelial cell proliferation.

Kihito Hada; Atsushi Suda; Kohsuke Asoh; Takuo Tsukuda; Masami Hasegawa; Yasuko Sato; Kotaro Ogawa; Shino Kuramoto; Yuko Aoki; Nobuo Shimma; Tsutomu Ishikawa; Hiroshi Koyano

Proliferation of endothelial cells is critical for angiogenesis. We report orally available, in vivo active antiangiogenic agents which specifically inhibit endothelial cell proliferation. After identifying human umbilical vein endothelial cell (HUVEC) proliferation inhibitors from a cell-based high-throughput screening (HTS), we eliminated those compounds which showed cytotoxicity against HCT116 and vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitory activity. Evaluations in human Calu-6 xenograft model delivered lead compound 1. Following extensive lead optimization and alteration of the scaffold we discovered 32f and 32g, which both inhibited the proliferation and tube formation of HUVEC without showing inhibitory activity against any of 25 kinases or cytotoxicity against either normal fibroblasts or 40 cancer cell lines. Upon oral administration, 32f and 32g had good pharmacokinetic profiles and potent antitumor activity and decreased microvessel density (MVD) in Calu-6 xenograft model. Combination therapy with a VEGFR inhibitor enhanced the in vivo efficacy. These results suggest that 32f and 32g may have potential for use in cancer treatment.


Drug Metabolism and Disposition | 2014

A useful model capable of predicting the clearance of cytochrome 3A4 (CYP3A4) substrates in humans: validity of CYP3A4 transgenic mice lacking their own Cyp3a enzymes.

Tetsuya Mitsui; Takayuki Nemoto; Taiji Miyake; Shunsuke Nagao; Kotaro Ogawa; Motohiro Kato; Masaki Ishigai; Hideyuki Yamada

The accurate prediction for the body clearance of a novel drug candidate by humans during the preclinical stage contributes to its successful development. To improve the predictability of human hepatic clearance, we focused on CYP3A4, which is involved in the metabolism of more than 50% of all currently marketed drugs. In this study, we investigated the validity of the in vivo model using transgenic mice carrying the human CYP3A4 gene and lacking their own Cyp3a genes (CYP3A4-Tg mice). The CYP3A4 activity toward its substrates in liver microsomes was similar in CYP3A4-Tg mice and humans. As for the clearance, six CYP3A4 substrates (alprazolam, felodipine, midazolam, nifedipine, nitrendipine, and quinidine) were given intravenously to CYP3A4-Tg mice, and their hepatic intrinsic clearance (CLint,h) was evaluated. A regression analysis of the data obtained indicated that the CLint,h values of six substrates in CYP3A4-Tg mice were highly correlated with those in humans (R2 = 0.95). This correlation could be improved by correcting the CLint,h values by the relative contribution of artificially expressed CYP3A4 to the overall metabolism in the mice. From these findings, it is reasonable to expect that the CLint,h of a particular drug in humans is predictable by applying the CLint,h obtained in CYP3A4-Tg mice to a regression line prepared in advance. The variance of the CLint,h prediction by this method was evaluated and found to be within a range of 2-fold of the regression value. These results suggest that the CYP3A4-Tg mouse model has the potential to accurately predict the human hepatic clearance of CYP3A4 substrates.


Nature Communications | 2016

Identification of an orally active small-molecule PTHR1 agonist for the treatment of hypoparathyroidism.

Tatsuya Tamura; Hiroshi Noda; Eri Joyashiki; Maiko Hoshino; Tomoyuki Watanabe; Masahiko Kinosaki; Yoshikazu Nishimura; Tohru Esaki; Kotaro Ogawa; Taiji Miyake; Shinichi Arai; Masaru Shimizu; Hidetomo Kitamura; Haruhiko Sato; Yoshiki Kawabe

Parathyroid hormone (PTH) is essential for calcium homeostasis and its action is mediated by the PTH type 1 receptor (PTHR1), a class B G-protein-coupled receptor. Hypoparathyroidism and osteoporosis can be treated with PTH injections; however, no orally effective PTH analogue is available. Here we show that PCO371 is a novel, orally active small molecule that acts as a full agonist of PTHR1. PCO371 does not affect the PTH type 2 receptor (PTHR2), and analysis using PTHR1–PTHR2 chimeric receptors indicated that Proline 415 of PTHR1 is critical for PCO371-mediated PTHR1 activation. Oral administration of PCO371 to osteopenic rats provokes a significant increase in bone turnover with limited increase in bone mass. In hypocalcemic rats, PCO371 restores serum calcium levels without increasing urinary calcium, and with stronger and longer-lasting effects than PTH injections. These results strongly suggest that PCO371 can provide a new treatment option for PTH-related disorders, including hypoparathyroidism.


Bioorganic & Medicinal Chemistry | 2015

Modification of a dihydropyrrolopyrimidine phosphoinositide 3-kinase (PI3K) inhibitor to improve oral bioavailability.

Hatsuo Kawada; Hirosato Ebiike; Masao Tsukazaki; Shun Yamamoto; Kohei Koyama; Mitsuaki Nakamura; Kenji Morikami; Kiyoshi Yoshinari; Miyuki Yoshida; Kotaro Ogawa; Nobuo Shinma; Takuo Tsukuda; Jun Ohwada

Phosphoinositide 3-kinase (PI3K) is activated in various human cancer cells and well known as a cancer therapy target. We previously reported a dihydropyrrolopyrimidine derivative as a highly potent PI3K inhibitor that has strong tumor growth inhibition in a xenograft model. In this report, we describe further optimization to improve its bioavailability.


Bioorganic & Medicinal Chemistry | 2016

Optimization of the phenylurea moiety in a phosphoinositide 3-kinase (PI3K) inhibitor to improve water solubility and the PK profile by introducing a solubilizing group and ortho substituents

Hatsuo Kawada; Hirosato Ebiike; Masao Tsukazaki; Shun Yamamoto; Kohei Koyama; Mitsuaki Nakamura; Kenji Morikami; Kiyoshi Yoshinari; Miyuki Yoshida; Kotaro Ogawa; Nobuo Shimma; Takuo Tsukuda; Jun Ohwada

Phosphoinositide 3-kinase (PI3K) is a promising anti-cancer target, because various mutations and amplifications are observed in human tumors isolated from cancer patients. Our dihydropyrrolopyrimidine derivative with a phenylurea moiety showed strong PI3K enzyme inhibitory activity, but its pharmacokinetic property was poor because of lack of solubility. Herein, we report how we improved the solubility of our PI3K inhibitors by introducing a solubilizing group and ortho substituents to break molecular planarity.

Collaboration


Dive into the Kotaro Ogawa's collaboration.

Top Co-Authors

Avatar

Jun Ohwada

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Masao Tsukazaki

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Nobuo Shimma

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Kenji Morikami

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hatsuo Kawada

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Hirosato Ebiike

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miyuki Yoshida

Chugai Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Takuo Tsukuda

Chugai Pharmaceutical Co.

View shared research outputs
Researchain Logo
Decentralizing Knowledge