Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kouhei Ohtani is active.

Publication


Featured researches published by Kouhei Ohtani.


Phytopathology | 2005

An Isolate of Alternaria alternata That Is Pathogenic to Both Tangerines and Rough Lemon and Produces Two Host-Selective Toxins, ACT- and ACR-Toxins.

Akira Masunaka; Kouhei Ohtani; Tobin L. Peever; L. W. Timmer; Takashi Tsuge; Mikihiro Yamamoto; Hiroyuki Yamamoto; Kazuya Akimitsu

ABSTRACT Two different pathotypes of Alternaria alternata cause Alternaria brown spot of tangerines and Alternaria leaf spot of rough lemon. The former produces the host-selective ACT-toxin and the latter produces ACR-toxin. Both pathogens induce similar symptoms on leaves or young fruits of their respective hosts, but the host ranges of these pathogens are distinct and one pathogen can be easily distinguished from another by comparing host ranges. We isolated strain BC3-5-1-OS2A from a leaf spot on rough lemon in Florida, and this isolate is pathogenic on both cv. Iyokan tangor and rough lemon and also produces both ACT-toxin and ACR-toxin. Isolate BC3-5-1-OS2A carries both genomic regions, one of which was known only to be present in ACT-toxin producers and the other was known to exist only in ACR-toxin producers. Each of the genomic regions is present on distinct small chromosomes, one of 1.05 Mb and the other of 2.0 Mb. Alternaria species have no known sexual or parasexual cycle in nature and populations of A. alternata on citrus are clonal. Therefore, the ability to produce both toxins was not likely acquired through meiotic or mitotic recombination. We hypothesize that a dispensable chromosome carrying the gene cluster controlling biosynthesis of one of the host-selective toxins was transferred horizontally and rearranged by duplication or translocation in another isolate of the fungus carrying genes for biosynthesis of the other host-selective toxin.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing.

Kouhei Ohtani; Hiroyuki Yamamoto; Kazuya Akimitsu

Specificity in the interaction between rough lemon (Citrus jambhiri Lush.) and the fungal pathogen Alternaria alternata rough lemon pathotype is determined by a host-selective toxin, ACR-toxin. Mitochondria from rough lemon are sensitive to ACR-toxin whereas mitochondria from resistant plants, including other citrus species, are resistant. We have identified a C. jambhiri mitochondrial DNA sequence, designated ACRS (ACR-toxin sensitivity gene), that confers toxin sensitivity to Escherichia coli. ACRS is located in the group II intron of the mitochondrial tRNA-Ala and is translated into a SDS-resistant oligomeric protein in C. jambhiri mitochondria but is not translated in the toxin-insensitive mitochondria. ACRS is present in the mitochondrial genome of both toxin-sensitive and -insensitive citrus. However, in mitochondria of toxin-insensitive plants, the transcripts from ACRS are shorter than those in mitochondria of sensitive plants. These results demonstrate that sensitivity to ACR-toxin and hence specificity of the interaction between A. alternata rough lemon pathotype and C. jambhiri is due to differential posttranscriptional processing of a mitochondrial gene.


Molecular Plant-microbe Interactions | 2008

Functional analysis of a multicopy host-selective ACT-toxin biosynthesis gene in the tangerine pathotype of Alternaria alternata using RNA silencing

Yoko Miyamoto; Akira Masunaka; Takashi Tsuge; Mikihiro Yamamoto; Kouhei Ohtani; Takeshi Fukumoto; Kenji Gomi; Tobin L. Peever; Kazuya Akimitsu

Alternaria brown spot, caused by the tangerine pathotype of Alternaria alternata, is a serious disease of commercially important tangerines and their hybrids. The pathogen produces host-selective ACT toxin, and several genes (named ACTT) responsible for ACT-toxin biosynthesis have been identified. These genes have many paralogs, which are clustered on a small, conditionally dispensable chromosome, making it difficult to disrupt entire functional copies of ACTT genes using homologous recombination-mediated gene disruption. To overcome this problem, we attempted to use RNA silencing, which has never been employed in Alternaria spp., to knock down the functional copies of one ACTT gene with a single silencing event. ACTT2, which encodes a putative hydrolase and is present in multiple copies in the genome, was silenced by transforming the fungus with a plasmid construct expressing hairpin ACTT2 RNAs. The ACTT2 RNA-silenced transformant (S-7-24-2) completely lost ACTT2 transcripts and ACT-toxin production as well as pathogenicity. These results indicated that RNA silencing may be a useful technique for studying the role of ACTT genes responsible for host-selective toxin biosynthesis in A. alternata. Further, this technique may be broadly applicable to the analysis of many genes present in multiple copies in fungal genomes that are difficult to analyze using recombination-mediated knockdowns.


Phytopathology | 2010

Role of the host-selective ACT-toxin synthesis gene ACTTS2 encoding an enoyl-reductase in pathogenicity of the tangerine pathotype of Alternaria alternata.

Naoya Ajiro; Yoko Miyamoto; Akira Masunaka; Takashi Tsuge; Mikihiro Yamamoto; Kouhei Ohtani; Takeshi Fukumoto; Kenji Gomi; Tobin L. Peever; Yuriko Izumi; Yasuomi Tada; Kazuya Akimitsu

ABSTRACT The tangerine pathotype of Alternaria alternata produces host-selective ACT-toxin and causes Alternaria brown spot disease of tangerines and tangerine hybrids. Sequence analysis of a genomic BAC clone identified a previously uncharacterized portion of the ACT-toxin biosynthesis gene cluster (ACTT). A 1,034-bp gene encoding a putative enoyl-reductase was identified by using rapid amplification of cDNA ends and polymerase chain reaction and designated ACTTS2. Genomic Southern blots demonstrated that ACTTS2 is present only in ACT-toxin producers and is carried on a 1.9 Mb conditionally dispensable chromosome by the tangerine pathotype. Targeted gene disruption of ACTTS2 led to a reduction in ACT-toxin production and pathogenicity, and transcriptional knockdown of ACTTS2 using RNA silencing resulted in complete loss of ACT-toxin production and pathogenicity. These results indicate that ACTTS2 is an essential gene for ACT-toxin biosynthesis in the tangerine pathotype of A. alternata and is required for pathogenicity of this fungus.


Journal of Plant Physiology | 2011

d-Psicose induces upregulation of defense-related genes and resistance in rice against bacterial blight

Akihito Kano; Kouji Hosotani; Kenji Gomi; Yumiko Yamasaki-Kokudo; Chikage Shirakawa; Takeshi Fukumoto; Kouhei Ohtani; Shigeyuki Tajima; Ken Izumori; Keiji Tanaka; Yutaka Ishida; Yoko Nishizawa; Kazuya Ichimura; Yasuomi Tada; Kazuya Akimitsu

We examined rice responses to a rare sugar, d-psicose. Rice growth was inhibited by d-psicose but not by common sugars. Microarray analysis revealed that d-psicose treatment caused an upregulation of many defense-related genes in rice, and dose-dependent upregulation of these genes was confirmed by quantitative reverse-transcription polymerase chain reaction. The level of upregulation of defense-related genes by d-psicose was low compared with that by d-allose, which is another rare sugar known to confer induction of resistance to rice bacterial blight in rice. Treatment with d-psicose conferred resistance to bacterial blight in rice in a dose-dependent manner, and the results indicate that d-psicose might be a candidate plant activator for reducing disease development in rice.


Phytopathology | 2010

A rare sugar, D-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa.

Akihito Kano; Kenji Gomi; Yumiko Yamasaki-Kokudo; Masaru Satoh; Takeshi Fukumoto; Kouhei Ohtani; Shigeyuki Tajima; Ken Izumori; Keiji Tanaka; Yutaka Ishida; Yasuomi Tada; Yoko Nishizawa; Kazuya Akimitsu

We investigated responses of rice plant to three rare sugars, d-altrose, d-sorbose, and d-allose, due to establishment of mass production methods for these rare sugars. Root growth and shoot growth were significantly inhibited by d-allose but not by the other rare sugars. A large-scale gene expression analysis using a rice microarray revealed that d-allose treatment causes a high upregulation of many defense-related, pathogenesis-related (PR) protein genes in rice. The PR protein genes were not upregulated by other rare sugars. Furthermore, d-allose treatment of rice plants conferred limited resistance of the rice against the pathogen Xanthomonas oryzae pv. oryzae but the other tested sugars did not. These results indicate that d-allose has a growth inhibitory effect but might prove to be a candidate elicitor for reducing disease development in rice.


Phytopathology | 2009

Function of Genes Encoding Acyl-CoA Synthetase and Enoyl-CoA Hydratase for Host-Selective ACT-Toxin Biosynthesis in the Tangerine Pathotype of Alternaria alternata

Yoko Miyamoto; Y. Ishii; A. Honda; Akira Masunaka; Takashi Tsuge; Mikihiro Yamamoto; Kouhei Ohtani; Takeshi Fukumoto; Kenji Gomi; Tobin L. Peever; Kazuya Akimitsu

The tangerine pathotype of Alternaria alternata produces host-selective ACT-toxin and causes Alternaria brown spot disease. Sequence analysis of a genomic cosmid clone identified a part of the ACTT gene cluster and implicated two genes, ACTT5 encoding an acyl-CoA synthetase and ACTT6 encoding an enoyl-CoA hydratase, in the biosynthesis of ACT-toxin. Genomic Southern blots demonstrated that both genes were present in tangerine pathotype isolates producing ACT-toxin and also in Japanese pear pathotype isolates producing AK-toxin and strawberry pathotype isolates producing AF-toxin. ACT-, AK-, and AF-toxins from these three pathotypes share a common 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid moiety. Targeted gene disruption of two copies of ACTT5 significantly reduced ACT-toxin production and virulence. Targeted gene disruption of two copies of ACTT6 led to complete loss of ACT-toxin production and pathogenicity and a putative decatrienoic acid intermediate in ACT-toxin biosynthesis accumulated in mycelial mats. These results indicate that ACTT5 and ACTT6 are essential genes in ACT-toxin biosynthesis in the tangerine pathotype of A. alternata and both are required for full virulence of this fungus.


Molecular Plant-microbe Interactions | 2010

ACTTS3 encoding a polyketide synthase is essential for the biosynthesis of ACT-toxin and pathogenicity in the tangerine pathotype of Alternaria alternata.

Yoko Miyamoto; Akira Masunaka; Takashi Tsuge; Mikihiro Yamamoto; Kouhei Ohtani; Takeshi Fukumoto; Kenji Gomi; Tobin L. Peever; Yasuomi Tada; Kazuya Ichimura; Kazuya Akimitsu

The tangerine pathotype of Alternaria alternata produces host-selective ACT-toxin and causes Alternaria brown spot disease of tangerine and tangerine hybrids. Sequence analysis of a genomic BAC clone identified part of the ACT-toxin TOX (ACTT) gene cluster, and knockout experiments have implicated several open reading frames (ORF) contained within the cluster in the biosynthesis of ACT-toxin. One of the ORF, designated ACTTS3, encoding a putative polyketide synthase, was isolated by rapid amplification of cDNA ends and genomic/reverse transcription-polymerase chain reactions using the specific primers designed from the BAC sequences. The 7,374-bp ORF encodes a polyketide synthase with putative beta-ketoacyl synthase, acyltransferase, methyltransferase, beta-ketoacyl reductase, and phosphopantetheine attachment site domains. Genomic Southern blots demonstrated that ACTTS3 is present on the smallest chromosome in the tangerine pathotype of A. alternata, and the presence of ACTTS3 is highly correlated with ACT-toxin production and pathogenicity. Targeted gene disruption of two copies of ACTTS3 led to a complete loss of ACT-toxin production and pathogenicity. These results indicate that ACTTS3 is an essential gene for ACT-toxin biosynthesis in the tangerine pathotype of A. alternata and is required for pathogenicity of this fungus.


Phytopathology | 2003

Green fluorescent detection of fungal colonization and endopolygalacturonase gene expression in the interaction of Alternaria citri with citrus

A. Isshiki; Kouhei Ohtani; M. Kyo; Hiroyuki Yamamoto; Kazuya Akimitsu

ABSTRACT Alternaria citri, a postharvest pathogen, produces endopolygalacturonase (endoPG) and causes black rot on citrus fruit. We previously described that an endoPG-disrupted mutant of Alternaria citri was significantly reduced in its ability to macerate plant tissue and cause black rot symptoms on citrus. In order to investigate colonization of citrus fruit tissues by Alternaria citri, pTEFEGFP carrying a green fluorescent protein (GFP) gene was introduced into wild-type Alternaria citri and its endoPG-disrupted mutant (M60). Green fluorescence was observed in spores, germ tubes, appressoria, and infection hyphae of transformants G1 (derived from wild type) and GM4 (derived from M60). Hyphae of G1 but not GM4 vertically penetrated the peel, but the hyphae of both G1 and GM4 spread equally in the juice sac area of citrus fruit. Green fluorescence of Alternaria citri transformant EPG7 carrying a GFP gene under control of the endoPG gene promoter of Alternaria citri was induced by pectin in the peel during the infection stage, but repressed completely in the juice sac area, likely by carbon catabolite repression by sugars in the juice.


Molecular Plant-microbe Interactions | 2012

A polyketide synthase gene, ACRTS2, is responsible for biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria alternata.

Yuriko Izumi; Kouhei Ohtani; Yoko Miyamoto; Akira Masunaka; Takeshi Fukumoto; Kenji Gomi; Yasuomi Tada; Kazuya Ichimura; Tobin L. Peever; Kazuya Akimitsu

The rough lemon pathotype of Alternaria alternata produces host-selective ACR-toxin and causes Alternaria leaf spot disease of rough lemon (Citrus jambhiri). The structure of ACR-toxin I (MW = 496) consists of a polyketide with an α-dihydropyrone ring in a 19-carbon polyalcohol. Genes responsible for toxin production were localized to a 1.5-Mb chromosome in the genome of the rough lemon pathotype. Sequence analysis of this chromosome revealed an 8,338-bp open reading frame, ACRTS2, that was present only in the genomes of ACR-toxin-producing isolates. ACRTS2 is predicted to encode a putative polyketide synthase of 2,513 amino acids and belongs to the fungal reducing type I polyketide synthases. Typical polyketide functional domains were identified in the predicted amino acid sequence, including β-ketoacyl synthase, acyl transferase, methyl transferase, dehydratase, β-ketoreductase, and phosphopantetheine attachment site domains. Combined use of homologous recombination-mediated gene disruption and RNA silencing allowed examination of the functional role of multiple paralogs in ACR-toxin production. ACRTS2 was found to be essential for ACR-toxin production and pathogenicity of the rough lemon pathotype of A. alternata.

Collaboration


Dive into the Kouhei Ohtani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobin L. Peever

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge